Modelos matemáticos para el entendimiento del dengue
Palabras clave:
Dengue, Ae. Aegypti, Ae. albopictus, Epidemiología matemática, Colombia, Control químico, Wolbachia, Tailandia, Estados Unidos, México, Chikungunya, Zika, Cambio climático, Trasmisión, Virus, Vector, Hospederos, Arbovirosis, Modelos matemáticos, Prevención, Sistemas de alerta temprana, APEETVE, Herramientas informáticasSinopsis
La forma más efectiva de reducir el impacto del Aedes aegypti sigue siendo la mitigación de su presencia en zonas endémicas. No obstante, los esfuerzos realizados en varios países no han logrado frenar su expansión. El uso exclusivo de control químico conlleva riesgos para la salud humana y promueve la resistencia en los mosquitos, mientras que la liberación de mosquitos infectados con Wolbachia requiere acciones complementarias de prevención y participación comunitaria. En este contexto, los modelos matemáticos son herramientas fundamentales para diseñar estrategias de control integrales ya que permiten identificar condiciones óptimas para determinar los momentos y lugares más adecuados para intervenciones químicas, biológicas, mecánicas o campañas de vacunación, y comprender la dinámica conjunta entre la población de mosquitos y la población humana expuesta. Además, estos modelos pueden contribuir al desarrollo de sistemas de alerta temprana y formular políticas públicas basadas en evidencia. Este libro ofrece una guía para la toma de decisiones en salud pública mediante la formulación de modelos matemáticos que orientan la selección de estrategias de control y el análisis de temas clave en epidemiología.
Capítulos
-
Introducción
-
Dengue en Colombia
-
Epidemiología matemática
-
Canal endémico
-
Matemáticas para entender el dengue
-
Estimación de parámetros y control
-
Modelos basados en individuos
-
Sistemas de alerta temprana para el dengue
Biografía del autor/a
Docente de la Escuela de Ciencias Aplicadas e Ingeniería, Universidad EAFIT.
Doctora en Ingeniería Matemática de la Universidad EAFIT y profesora de IU Digital de Antioquia
Bióloga e integrante del Grupo Biología y Control de Enfermedades Infecciosas (BCEI) de la Universidad de Antioquia.
Doctora en Biología e integrante del grupo BCEI. También es profesora del Instituto de Biología de la Universidad de Antioquia y de la Universidad Nacional de Colombia, sede Manizales
Doctora en Biología e integrante del grupo BCEI.
Ingeniero Matemático de la Universidad EAFIT.
Doctor en Automática e Informática Industrial de la Universidad Politécnica de Valencia y profesor de la Escuela de Ciencias Aplicadas e Ingeniería de la Universidad EAFIT.
Escuela de Ciencias Aplicadas e Ingeniería de la Universidad EAFIT.
Doctora en Ingeniería Matemática de la Universidad EAFIT. También trabaja como investigadora postdoctoral en la Universidad de Oslo
Profesora de Carrera Titular C del Departamento de Matemáticas de la Facultad de Ciencias de la Universidad Nacional Autónoma de México
Doctor en Computer Science de la Université de Bordeaux. También es docente de la Escuela de Ciencias Aplicadas e Ingeniería de la Universidad EAFIT
Doctor en Biología de la Universidad de Antioquia, integrante del grupo BCEI, profesor del Instituto de Biología de la Universidad de Antioquia.
Doctor en Ciencias Biomédicas de la Universidad de Chile. Profesor Titular del Instituto de Biología de la Facultad de Ciencias Exactas y Naturales de la Universidad de Antioquia y líder grupo BCEI.
Magíster en Biología e integrante del grupo BCEI
Integrante del grupo BCEI
Referencias bibliográficas
[1] L. M. Hernández, D. F. Durán, D. A. Buitrago, C. A. Garnica, L. F. Gómez, D. M. Bados, M. P. Bernal, and L. M. Páez, “Epidemiology and georeferencing of the dengue fever in a hospital of second level in Colombia, 2010–2014,” Journal of Infection and Public Health, vol. 11, no. 4, pp. 558–565, 2018
[2] M. Carabali, J. K. Lim, D. C. Velez, A. Trujillo, J. Egurrola, K. S. Lee, J. S. Kaufman, L. J. DaSilva, I. D. Velez, and J. E. Osorio, “Dengue virus serological prevalence and seroconversion rates in children and adults in Medellin, Colombia: implications for vaccine introduction,” International Journal of Infectious Diseases, vol. 58, pp. 27–36, 2017
[3] S. Bos, G. Gadea, and P. Despres, “Dengue: a growing threat requiring vaccine development for disease prevention,” Pathogens and Global Health, vol. 112, no. 6, pp. 294–305, 2018. PMID: 30213255
[4] E. S. Paixão, M. G. Teixeira, and L. C. Rodrigues, “Zika, chikungunya and dengue: the causes and threats of new and reemerging arboviral diseases,” BMJ Global Health, vol. 3, no. Suppl 1, 2018. [5] J. Screaton, Gavin y Mongkolsapaya, “Which dengue vac cine approach is the most promising, and should we be concerned about enhanced disease after vaccination?: The challenges of a dengue vaccine.,” Cold Spring Har bor Perspectives in Biology, no. 6, p. a029520, 2018
[6] F. Jacky, M. A. Diosa Toro, T. E. Hoornweg, D. P. Van De Pol, S. UrcuquiInchima, and J. M. Smit, “Antibody dependent enhancement of dengue virus infection in primary human macrophages; balancing higher fusion against antiviral responses,” Scientific reports, no. 1, pp. 1–13, 2016
[7] C. L. Moyes, J. Vontas, A. J. Martins, L. C. Ng, S. Y. Koou,I. Dusfour, J. ã. o. Raghavendra, Kamaraju y Pinto, V. Cor bel, J.P. David, and other, “Contemporary status of insecticide resistance in the major aedes vectors of arboviruses infecting humans.,” PLoS Neglected Tropical Diseases, no. 7, p. e0005625, 2017
[8] W. F. Silva Martins, L. R. Haines, M. J. Donnelly, and D. Weetman, “Does use of domestic insecticides undermine public health control strategies?,” The Lancet Regional Health Americas, vol. 45, p. 101076, 2025
[9] G. Benelli, C. L. Jeffries, and T. Walker, “Biological control of mosquito vectors: past, present, and future. insects,” Insects, no. 4, p. 52, 2016. [10] G. Rodríguez, Raúl Castro y Carrasquilla, A. Porras,K. Galera Gelvez, J. G. L. Yescas, and J. A. Rueda Gallardo, “The burden of dengue and the financial cost to Colombia, 20102012,” American Journal of Tropical Medicine and Hygiene, no. 5, pp. 1065–1072, 2016
[11] J. N. Eisenberg, M. A. Brookhart, G. Rice, M. Brown, and J. M. Colford Jr, “Disease transmission models for public health decision making: analysis of epidemic and endemic conditions caused by waterborne pathogens.,” Environ mental health perspectives, vol. 110, no. 8, pp. 783–790,2002
[12] F. Sanchez, L. Barboza, and P. Vásquez, “Parameter estimates of the 20162017 zika outbreak in Costa Rica: an approximate bayesian computation (abc) approach,” arXiv preprint arXiv:1812.09263, 2018
[13] B. Tang, Y. Xiao, and J. Wu, “Implication of vaccination against dengue for zika outbreak,” Scientific reports, vol. 6, no. 1, pp. 1–14, 2016
[14] M. Burattini, M. Chen, A. Chow, F. Coutinho, K. Goh, L. Lopez, S. Ma, and E. Massad, “Modelling the control strategies against dengue in Singapore,” Epidemiology & Infection, vol. 136, no. 3, pp. 309–319, 2008
[15] J. Z. Farkas, S. A. Gourley, R. Liu, and A.A. Yakubu, “Modelling wolbachia infection in a sex structured mosquito population carrying west nile virus,” Journal of mathematical biology, vol. 75, no. 3, pp. 621–647, 2017
[16] H. Hughes and N. F. Britton, “Modelling the use of wolbachia to control dengue fever transmission,” Bulletin of mathematical biology, vol. 75, no. 5, pp. 796–818, 2013
[17] P. Guo, T. Liu, Q. Zhang, L. Wang, J. Xiao, Q. Zhang, G. Luo, Z. Li, J. He, Y. Zhang, et al., “Developing a dengue forecast model using machine learning: A case study in china,” PLoS neglected tropical diseases, vol. 11, no. 10,p. e0005973, 2017
[18] F. Ruiz López, A. GonzálezMazo, A. Vélez Mira, G. F. Gómez, L. Zuleta, S. Uribe, and I. D. Vélez Bernal, “Presencia de aedes (stegomyia) aegypti (linnaeus, 1762) y su infección natural con el virus del dengue en alturas no registradas para Colombia,” Biomédica, vol. 36, no. 2, pp. 303–308, 2016
[19] M. de Salud y Protección Social de Colombia, “Gestión para la vigilancia entomológica y control de la transmisión de dengue,” 2013. https://www.minsalud.gov.co/sites/rid/Lists/ BibliotecaDigital/RIDE/DE/gestionvigilancia entomologicadengue.pdf
[20] H. Padmanabha, D. Durham, F. Correa, M. Diuk Wasser, and A. Galvani, “The interactive roles of aedes aegypti superproduction and human density in dengue transmission,” PLoS neglected tropical diseases, vol. 6, no. 8, 2012
[21] Instituto Nacional de Salud, “Boletín epidemiológico semanal: Semana epidemiológica 46,” 2019
[22] Instituto Nacional de Salud, “Boletín epidemiológico semanal: Semana epidemiológica 52,” 2019. https://www.ins.gov.co/
[23] Á. M. Medina, “El dengue en Colombia. epidemiología de la reemergencia a la hiperendemia.,” Medicina, vol. 35, no. 1, pp. 75–76, 2013
[24] S. A. Kularatne, “Dengue fever,” BMJ, vol. 15, p. h4661, 2015
[25] C. P. Simmons, J. Farrar, N. Chau, and B. Wills, “Current concepts dengue,” The New England Journal of Medicine, vol. 366, p. 15, 2012
[26] G. Montero, “Biología de aedes aegypti,” 2009. http://www.produccionanimal.com.ar/fauna/Fauna insectos/79 Aedes aegypti.pdf
[27] F. Nelson, D. Holloway, and A. Mohamed, “A laboratory study of cyromazine on aedes aegypti and culex quinque fasciatus and its activity on selected predators of mosquito larvae.,” Journal of the American Mosquito Control Association, vol. 2, no. 3, pp. 296–299, 1986. [28] F. W. Avila, L. K. Sirot, B. A. LaFlamme, C. D. Rubinstein, and M. F. Wolfner, “Insect seminal fluid proteins: identification and function,” Annual review of entomology, vol. 56, pp. 21–40, 2011
[29] M. E. Helinski, P. Deewatthanawong, L. K. Sirot, M. F. Wolfner, and L. C. Harrington, “Duration and dose dependency of female sexual receptivity responses to se minal fluid proteins in aedes albopictus and ae. aegypti mosquitoes,” Journal of insect physiology, vol. 58, no. 10, pp. 1307–1313, 2012
[30] J. B. Richardson, S. B. Jameson, A. Gloria Soria, D. M. Wesson, and J. Powell, “Evidence of limited polyandry in a natural population of aedes aegypti,” The American journal of tropical medicine and hygiene, vol. 93, no. 1, pp. 189–193, 2015
[31] H. Groot, A. Morales, M. Romero, C. Ferro, E. Prías, H. Vidales, B. Buitrago, V. A. Olano, D. Calvache, G. Márquez, et al., “Estudios de arbovirosis en Colombia en la década de 1970,” Biomédica, vol. 16, no. 4, pp. 331–44,1996
[32] I. D. Vélez, M. L. Quiñones, M. Suarez, V. Olano, L. M. Murcia, E. Correa, C. Arévalo, L. Pérez, H. Brochero, and A. Morales, “Presencia de aedes albopictus en leticia, amazonas, Colombia,” Biomédica, vol. 18, no. 3, pp. 192–198, 1998. [33] F. Méndez, M. Barreto, J. F. Arias, G. Rengifo, J. Munoz, M. E. Burbano, and B. Parra, “Human and mosquito infections by dengue viruses during and after epidemics in a dengue–endemic region of Colombia,” The American journal of tropical medicine and hygiene, vol. 74, no. 4, pp. 678–683, 2006
[34] G. Rúa Uribe, C. Suárez Acosta, V. Londoño, J. Sánchez, R. Rojo, and B. Bello Novoa, “Primera evidencia de aedes albopictus (skuse)(diptera: Culicidae) en la ciudad de Medellín, Antioquia Colombia,” Rev Salud Pública Alcaldía de Medellín, vol. 5, pp. 89–98, 2011
[35] J. J. Carvajal, N. A. Honorio, S. P. Díaz, E. R. Ruiz, J. As prilla, S. Ardila, and G. Parra Henao, “Detección de ae des albopictus (skuse)(diptera: Culicidae) en el municipio de Istmina, Chocó, Colombia,” Biomédica, vol. 36, no. 3, pp. 438–446, 2016
[36] M. CamachoGómez and L. P. Zuleta, “Primer reporte de aedes (stegomyia) albopictus (skuse) en la Orinoquía Colombiana,” Biomédica, vol. 39, no. 4, 2019
[37] G. F. O’meara, L. F. Evans Jr, A. D. Gettman, and J. P. Cu da, “Spread of aedes albopictus and decline of ae. aegypti (diptera: Culicidae) in Florida,” Journal of medical entomology, vol. 32, no. 4, pp. 554–562, 1995
[38] F. Tripet, L. P. Lounibos, D. Robbins, J. Moran, N. Nishi mura, and E. M. Blosser, “Competitive reduction by satyrization? evidence for interspecific mating in nature and asymmetric reproductive competition between invasive mosquito vectors,” The American journal of tropical medicine and hygiene, vol. 85, no. 2, pp. 265–270, 2011
[39] S. Z. Aguirre, “Satirización en poblaciones naturales de aedes aegypti de Medellín, Colombia (tesis de pregrado),” 2016
[40] M. G. Guzman, D. J. Gubler, A. Izquierdo, E. Martínez, and S. B. Halstead, “Dengue infection,” Nature reviews Disease primers, vol. 2, no. 1, pp. 1–25, 2016
[41] C. Imai and M. Hashizume, “Systematic review on methodology: time series regression analysis for environmental factors and infectious diseases,” Tropical medicine and health, 2014
[42] C. W. Morin, A. C. Comrie, and K. Ernst, “Climate and dengue transmission: evidence and implications,” Environmental health perspectives, vol. 121, no. 1112, pp. 1264–1272, 2013
[43] S. Naish, P. Dale, J. S. Mackenzie, J. McBride, K. Mengersen, and S. Tong, “Climate change and dengue: a cri tical and systematic review of quantitative modelling ap proaches,” BMC infectious diseases, vol. 14, no. 1, p. 167, 2014. [44] J. A. Usme Ciro, J. A. Mendez, A. Tenorio, G. J. Rey, C. Domingo, and J. C. Gallego Gomez, “Simultaneous circulation of genotypes i and iii of dengue virus 3 in Colombia,” Virology journal, vol. 5, no. 1, p. 101, 2008
[45] L. A. Villar, D. P. Rojas, S. Besada Lombana, and E. Sar ti, “Epidemiological trends of dengue disease in Colombia (20002011): a systematic review,” PLoS neglected tropical diseases, vol. 9, no. 3, 2015
[46] S. Arboleda, N. Jaramillo O, and A. T. Peterson, “Spatial and temporal dynamics of aedes aegypti larval sites in be llo, Colombia,” Journal of Vector Ecology, vol. 37, no. 1, pp. 37–48, 2012
[47] C. Romero Vivas, C. Leake, and A. Falconar, “Determination of dengue virus serotypes in individual aedes aegypti mosquitoes in Colombia.,” Medical and veterinary entomology, vol. 12, no. 3, pp. 284–288, 1998
[48] L. L. Quintero Herrera, V. Ramírez Jaramillo, S. Bernal Gutiérrez, E. V. Cárdenas Giraldo, E. A. Guerrero Matituy, A. H. Molina Delgado, C. P. Montoya Arias, J. A. Rico Gallego, A. C. Herrera Giraldo, S. Botero Franco, et al., “Potential impact of climatic variability on the epidemiology of dengue in Risaralda, Colombia, 2010– 2011,” Journal of infection and public health, vol. 8, no. 3, pp. 291–297, 2015. [49] F. S. Chang, Y. T. Tseng, P. S. Hsu, C. D. Chen, I. B. Lian, and D. Y. Chao, “Reassess vector indices threshold as an early warning tool for predicting dengue epidemic in a dengue nonendemic country,” PLoS Negl Trop Dis, vol. 9, no. 9, p. e0004043, 2015
[50] L. Sanchez, J. Cortinas, O. Pelaez, H. Gutierrez, D. Concepción, and P. Van Der Stuyft, “Breteau index threshold levels indicating risk for dengue transmission in areas with low aedes infestation,” Tropical Medicine & International Health, vol. 15, no. 2, pp. 173–175, 2010
[51] L. Sanchez, V. Vanlerberghe, L. Alfonso, M. del Car men Marquetti, M. G. Guzman, J. Bisset, and P. Van Der Stuyft, “Aedes aegypti larval indices and risk for dengue epidemics,” Emerging infectious diseases, vol. 12, no. 5, p. 800, 2006
[52] L. R. Bowman, S. Runge Ranzinger, and P. McCall, “Assessing the relationship between vector indices and dengue transmission: a systematic review of the evidence,” PLoS neglected tropical diseases, vol. 8, no. 5, 2014
[53] D. P. O. de Melo, L. R. Scherrer, and A. E. Eiras, “Dengue fever occurrence and vector detection by larval survey, ovitrap and mosquitrap: a spacetime clusters analysis,” PloS one, vol. 7, no. 7, 2012
[54] E. Descloux, M. Mangeas, C. E. Menkes, M. Lengaigne, A. Leroy, T. Tehei, L. Guillaumot, M. Teurlai, A.C. Gourinat, J. Benzler, et al., “Climate based models for understanding and forecasting dengue epidemics,” PLoS neglec ted tropical diseases, vol. 6, no. 2, 2012
[55] D. Focks, “A review of entomological sampling methods and indicators for dengue vectors [internet],” Dengue Bulletin, 2004
[56] J. Farrar, D. Focks, D. Gubler, R. Barrera, M. Guzman, C. Simmons, S. Kalayanarooj, L. Lum, P. McCall, L. Lloyd, et al., “Towards a global dengue research agenda,” Tropical Medicine & International Health, vol. 12, no. 6, pp. 695–699, 2007
[57] W. Tun Lin, B. Kay, A. Barnes, and S. Forsyth, “Critical examination of aedes aegypti indices: correlations with abundance,” The American journal of tropical medicine and hygiene, vol. 54, no. 5, pp. 543–547, 1996
[58] R. Pérez Castro, J. E. Castellanos, V. A. Olano, M. I. Matiz, J. F. Jaramillo, S. L. Vargas, D. M. Sarmiento, T. A. Stenström, and H. J. Overgaard, “Detection of all four dengue serotypes in aedes aegypti female mosquitoes collected in a rural area in Colombia,” Memorias do Instituto Oswaldo Cruz, vol. 111, no. 4, pp. 233–240, 2016
[59] C.F. Chen, P.Y. Shu, H.J. Teng, C.L. Su, J.W. Wu, J.H. Wang, T.H. Lin, J.H. Huang, and H.S. Wu, “Screening of dengue virus in field caught aedes aegypti and ae des albopictus (diptera: Culicidae) by one step sybr green based reverse transcriptase-polymerase chain reaction assay during 2004–2007 in southern Taiwan,” Vector Borne and Zoonotic Diseases, vol. 10, no. 10, pp. 1017– 1025, 2010
[60] D. Guedes, M. Cordeiro, M. Melo Santos, T. Magalhaes, E. Marques, L. Regis, A. Furtado, and C. Ayres, “Patient based dengue virus surveillance in aedes aegypti from Recife, Brazil,” Journal of vector borne diseases, vol. 47, pp. 67–75, 06 2010
[61] T. J. Victor, “Detection of dengue viral infections in ae des mosquitoes: an essential tool for epidemiological surveillance,” Indian Journal of Medical Research, vol. 129, no. 6, pp. 634–637, 2009
[62] R. Lanciotti, C. Calisher, D. Gubler, G.J. Chang, and A. Vorndam, “Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase polymerase chain reaction,” Journal of clinical microbiology, vol. 30, pp. 545–51, 04 1992
[63] R. Maestre Serrano, D. Gomez Camargo, G. Ponce Garcia, and A. E. Flores, “Susceptibility to insecticides and resistance mechanisms in aedes aegypti from the Colombian Caribbean region,” Pesticide biochemistry and physiology, vol. 116, pp. 63–73, 2014. [64] I. Fonseca González, M. L. Quiñones, A. Lenhart, and W. G. Brogdon, “Insecticide resistance status of aedes aegypti (l.) from Colombia,” Pest management science, vol. 67, no. 4, pp. 430–437, 2011
[65] Y. Granada, A. M. Mejía Jaramillo, C. Strode, and O. Triana Chavez, “A point mutation v419l in the sodium channel gene from natural populations of aedes aegypti is involved in resistance to λcyhalothrin in Colombia,” In sects, vol. 9, no. 1, p. 23, 2018
[66] C. B. Ocampo, M. J. Salazar Terreros, N. J. Mina, J. Mc Allister, and W. Brogdon, “Insecticide resistance status of aedes aegypti in 10 localities in Colombia,” Acta tropica, vol. 118, no. 1, pp. 37–44, 2011
[67] L. Santacoloma Varón, B. Chaves Córdoba, and H. L. Brochero, “Susceptibilidad de aedes aegypti a ddt, deltame trina y lambdacialotrina en Colombia,” Revista Panameri cana de Salud Pública, vol. 27, pp. 66–73, 2010
[68] M. C. Atencia, M. de Jesús Pérez, M. C. Jaramillo, S. M. Caldera, S. Cochero, and E. E. Bejarano, “Primer reporte de la mutación f1534c asociada con resistencia cruzada a ddt y piretroides en aedes aegypti en Colombia,” Biomédica, vol. 36, no. 3, pp. 432–437, 2016
[69] O. A. Aguirre Obando, A. C. D. Bona, L. Duque, E. Jonny, and M. A. Navarro Silva, “Insecticide resistance and genetic variability in natural populations of aedes (stegomyia) aegypti (diptera: Culicidae) from Colombia,” Zoologia (Curitiba), vol. 32, no. 1, pp. 14–22, 2015
[70] D. Chaverra Rodriguez, N. Jaramillo Ocampo, andI. Fonseca González, “Selección artificial de resistencia a lambdacialotrina en aedes aegypti y resistencia cruzada a otros insecticidas,” Rev Colomb Entomol, vol. 38, no. 1, pp. 100–107, 2012
[71] F. Díaz Quijano, A. González Rangel, A. Gómez Capacho, R. Espíndola Gómez, R. Martínez Vega, and L. Villar Centeno, “Pluviosidad como predictor de consulta por síndrome febril agudo en un área endémica de dengue,” Revista de Salud Pública, vol. 10, pp. 250–259, 2008
[72] S. Mattar, V. Morales, A. Cassab, and A. J. Rodríguez Morales, “Effect of climate variables on dengue incidence in a tropical Caribbean municipality of Colombia, Cereté, 2003–2008,” International Journal of Infectious Diseases, vol. 17, no. 5, pp. e358–e359, 2013
[73] M. D. Eastin, E. Delmelle, I. Casas, J. Wexler, and C. Self, “Intraand interseasonal autoregressive prediction of dengue outbreaks using local weather and regional cli mate for a tropical environment in Colombia,” The American journal of tropical medicine and hygiene, vol. 91, no. 3, pp. 598–610, 2014. [74] S. Arboleda, A. T. Peterson, et al., “Mapping environ mental dimensions of dengue fever transmission risk in the Aburrá valley, Colombia,” International journal of environmental research and public health, vol. 6, no. 12, pp. 3040–3055, 2009
[75] A. C. Restrepo, P. Baker, and A. C. Clements, “National spatial and temporal patterns of notified dengue cases, Colombia 2007–2010,” Tropical Medicine & International Health, vol. 19, no. 7, pp. 863–871, 2014
[76] M. A. Johansson, D. A. Cummings, and G. E. Glass, “Multiyear climate variability and dengue—el nino southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis,” PLoS medicine, vol. 6, no. 11, 2009
[77] G. Wang, H. Zhang, X. Cao, X. Zhang, G. Wang, Z. He, C. Yu, and T. Zhao, “Using garp to predict the range of aedes aegypti in China,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 45, no. 2, p. 290, 2014
[78] V. H. Peña García, O. Triana Chávez, A. M. Mejía Jaramillo, F. J. Díaz, A. Gómez Palacio, and S. Arboleda Sánchez, “Infection rates by dengue virus in mosquitoes and the influence of temperature may be related to different endemicity patterns in three Colombian cities,” International journal of environmental research and public health, vol. 13, no. 7, p. 734, 2016
[79] A. T. Peterson, C. Martínez Campos, Y. Nakazawa, and E. Martínez Meyer, “Time specific ecological niche modeling predicts spatial dynamics of vector insects and hu man dengue cases,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 99, no. 9, pp. 647– 655, 2005
[80] C. Rotela, F. Fouque, M. Lamfri, P. Sabatier, V. Introini, M. Zaidenberg, and C. Scavuzzo, “Space–time analysis of the dengue spreading dynamics in the 2004 tartagal out break, northern Argentina,” Acta tropica, vol. 103, no. 1, pp. 1–13, 2007
[81] F. J. Colón González, C. Fezzi, I. R. Lake, and P. R. Hunter, “The effects of weather and climate change on dengue,” PLoS neglected tropical diseases, vol. 7, no. 11, 2013
[82] L. Sánchez, D. Pérez, G. Cruz, L. C. Silva, M. Boelaert, and P. Van der Stuyft, “Participación comunitaria en el control de aedes aegypti: opiniones de la población en un municipio de la Habana, Cuba,” Revista Panamericana de Salud Pública, vol. 15, pp. 19–25, 2004
[83] W. Parks, L. Lloyd, M. Nathan, E. Hosein, A. Odu gleh, G. Clark, D. Gubler, C. Prasittisuk, K. Palmer, J. L. San Martín, S. Siversen, Z. Dawkins, and E. Renganathan, “International experiences in social mobilization and communication for dengue prevention and control,” Dengue Bulletin, vol. 28, 12 2004
[84] L. Rueda, “Pictorial keys for the identification of mosquitoes (diptera: Culicidae) associated with dengue virus transmission,” Zootaxa, vol. 589, 08 2004
[85] F. Rossi, S. Bandyopadhyay, M. Wolf, and M. Pavone, “Review of multiagent algorithms for collective behavior: a structural taxonomy,” IFAC Papers OnLine, vol. 51, no. 12, pp. 112–117, 2018
[86] M. William H., Plagues and peoples. Doubleday Dell Publishing Group, Inc, 1976
[87] V. Echeverría, “Girolamo fracastoro and the invention of syphilis],” História, ciencias, saúde–Manguinhos, vol. 17, pp. 877–884, 12 2010
[88] J. J. Carvajal, N. A. Honorio, S. P. Díaz, E. R. Ruiz, J. Asprilla, S. Ardila, and G. Parra Henao, “Detección de aedes albopictus (skuse)(diptera: Culicidae) en el municipio de istmina, chocó, Colombia,” Biomédica, vol. 36, no. 3, pp. 438–446, 2016
[89] E. Descloux, M. Mangeas, C. E. Menkes, M. Lengaigne, A. Leroy, T. Tehei, L. Guillaumot, M. Teurlai, A.C. Gourinat, J. Benzler, et al., “Climate based models for understanding and forecasting dengue epidemics,” PLoS neglec ted tropical diseases, vol. 6, no. 2, 2012
[90] J. Graunt, “Sobre las tablas de mortalidad, su inicio y su progreso,” Salud pública Méx, pp. 575–83, 1989
[91] A. Morabia, “Epidemiology: an epistemological perspective,” in A history of epidemiologic methods and concepts, pp. 3–125, Springer, 2004
[92] W. Farr, “Progress of epidemics,” Second report of the Registrar General of England and Wales, pp. 16–20, 1840
[93] J. Brownlee, “On the curve of the epidemic,” British medical journal, vol. 1, no. 2836, p. 799, 1915
[94] J. Brownlee, Periodicity in Infectious Disease. Royal Philosophical Society of Glasgow, 1914
[95] D. Bernoulli, “Essai dúne nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de línoculation pour la prévenir,” Histoire de l Ácad., Roy. Sci.(Paris) avec Mem, pp. 1–45, 1760
[96] D. J. Daley and J. Gani, Epidemic modelling: an introduction, vol. 15. Cambridge University Press, 2001
[97] P. D. En’ko, “On the course of epidemics of some infectious diseases,” International journal of epidemiology, vol. 18, no. 4, pp. 749–755, 1989. [98] W. H. Hamer, Epidemic disease in England: the evidence of variability and of persistency of type. Bedford Press, 1906
[99] W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical theory of epidemics,” Proceedings of the royal society of London. Series A, Containing papers of a mathematical and physical character, vol. 115, no. 772, pp. 700–721, 1927
[100] R. Ross, The prevention of malaria. J. Murray, 1910
[101] O. Diekmann, J. A. P. Heesterbeek, and J. A. Metz, “On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations,” Journal of mathematical biology, vol. 28, no. 4, pp. 365–382, 1990
[102] C. Castillo Chavez, K. Cooke, W. Huang, and S. Levin, “Results on the dynamics for models for the sexual transmission of the human immunodeficiency virus,” Applied Mathematics Letters, vol. 2, no. 4, pp. 327–331, 1989
[103] H. W. Hethcote and J. A. Yorke, Gonorrhea transmission dynamics and control, vol. 56. Springer, 2014
[104] H. Hethcote, “Modeling aids prevention programs in a population of homosexual men,” Modeling the AIDS Epidemic: Planning, Policy and Prediction, pp. 91–107, 1994. [105] F. Hoppensteadt, “An age dependent epidemic model,” Journal of the Franklin Institute, vol. 297, no. 5, pp. 325– 333, 1974
[106] H. W. Hethcote, “An immunization model for a heterogeneous population,” Theoretical population biology, vol. 14, no. 3, pp. 338–349, 1978
[107] J. Mena Lorca and H. Hethcote, “Dynamic models of infectious diseases as regulators of population sizes,” Journal of mathematical biology, vol. 30, no. 7, p. 693—716, 1992
[108] S. Busenberg and K. Cooke, Vertically transmitted diseases: models and dynamics, vol. 23. Springer Science & Business Media, 2012
[109] F. Brauer, “Models for diseases with vertical transmission and nonlinear population dynamics,” Mathematical Biosciences, vol. 128, no. 1, pp. 13–24, 1995
[110] M. G. Macdonald. G., The Epidemiology and Control of Malaria. Amen House, Warwick Square, London E.C.4.: Oxford University Press, 1957
[111] K. Dietz, “Transmission and control of arbovirus diseases,” In Proceedings of the Society for Industrial and Ap plied Mathematics, Epidemiology: Philadelphia, pp. 104– 121, 01 1974. [112] J. L. Aron and R. M. May, The population dynamics of ma laria, pp. 139–179. Boston, MA: Springer US, 1982
[113] R. Anderson, H. Jackson, R. May, and A. Smith, “Population dynamics of fox rabies in Europe,” Nature, vol. 289, pp. 765–71, 03 1981
[114] L. Sanchez, J. Cortinas, O. Pelaez, H. Gutierrez, D. Concepción, and P. Van Der Stuyft, “Breteau index threshold levels indicating risk for dengue transmission in areas with low aedes infestation,” Tropical Medicine & International Health, vol. 15, no. 2, pp. 173–175, 2010
[115] L. A. Rvachev and I. M. Longini, “A mathematical model for the global spread of influenza,” Mathematical Biosciences, vol. 75, no. 1, pp. 3–22, 1985
[116] N. T. Bailey et al., The mathematical theory of infectious diseases and its applications. Charles Griffin & Company Ltd, 5a Crendon Street, High Wycombe, Bucks HP13 6LE., 1975
[117] M. J. Keeling and K. T. Eames, “Networks and epidemic models,” Journal of the Royal Society Interface, vol. 2, no. 4, pp. 295–307, 2005
[118] M. Bortman, “Elaboración de corredores o canales endémicos mediante planillas de cálculo,” Revista Panamericana de Salud Pública, vol. 5, pp. 1–8, 1999. [119] J. Cullen, U. Chitprarop, E. Doberstyn, and K. Sombat wattanangkul, “An epidemiological early warning system for malaria control in northern Thailand,” Bulletin of the World Health Organization, vol. 62, no. 1, p. 107, 1984
[120] M. Hernández, D. Arboleda, S. Arce, A. Benavides, P. A. Tejada, S. V. Ramírez, and Á. Cubides, “Metodología para la elaboración de canales endémicos y tendencia de la notificación del dengue, valle del cauca, Colombia, 2009 2013,” Biomédica, vol. 36, no. 2, pp. 98–107, 2016
[121] O. P. de la Salud, “Módulo de principios de epidemiología para el control de las enfermedades,” 2002
[122] K. Betty and S. Jonathan, Essentials of Medical Statistics, vol. 2. Blackwell Science Ltd, 2001
[123] DANE, “Departamento administrativo nacional de estadística. Colombia. proyecciones de población, por área, según municipios.”[124] V. Racloz, R. Ramsey, S. Tong, and W. Hu, “Surveillance of dengue fever virus: a review of epidemiological models and early warning systems,” PLoS neglected tropical diseases, vol. 6, no. 5, p. e1648, 2012
[125] T.H. Wen, N. H. Lin, C.H. Lin, C.C. King, and M.D. Su, “Spatial mapping of temporal risk characteristics to improve environmental health risk identification: a case study of a dengue epidemic in Taiwan,” Science of the Total Environment, vol. 367, no. 23, pp. 631–640, 2006
[126] M. Parra Amaya, M. Puerta Yepes, D. Lizarralde Bejarano, and S. Arboleda Sánchez, “Early detection for dengue using local indicator of spatial association (lisa) analysis,” Diseases, vol. 4, no. 2, p. 16, 2016
[127] R. C. Reiner, T. A. Perkins, C. M. Barker, T. Niu, L. F. Chaves, A. M. Ellis, D. B. George, A. Le Menach, J. R. Pulliam, D. Bisanzio, et al., “A systematic review of mathematical models of mosquito borne pathogen transmission: 1970–2010,” Journal of The Royal Society Interface, vol. 10, no. 81, p. 20120921, 2013
[128] M. Andraud, N. Hens, C. Marais, and P. Beutels, “Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches,” PloS one, vol. 7, no. 11, p. e49085, 2012
[129] A. M. Stewart Ibarra, Á. G. Muñoz, S. J. Ryan, E. B. Ayala, M. J. Borbor Cordova, J. L. Finkelstein, R. Mejía, T. Ordoñez, G. C. Recalde Coronel, and K. Rivero, “Spatio temporal clustering, climate periodicity, and sociale cological risk factors for dengue during an outbreak in Machala, Ecuador, in 2010,” BMC infectious diseases, vol. 14, no. 1,p. 610, 2014
[130] V. H. Peña García, O. Triana Chávez, and S. Arboleda Sánchez, “Estimating Effects of Temperature on Dengue Transmission in Colombian Cities,” Annals of Global Health, vol. 83, no. 34, pp. 509–518, 2017
[131] O. J. Brady, M. A. Johansson, C. A. Guerra, S. Bhatt, N. Golding, D. M. Pigott, H. Delatte, M. G. Grech, P. T. Leisnham, R. Maciel De Freitas, L. M. Styer, D. L. Smith, T. W. Scott, P. W. Gething, and S. I. Hay, “Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings,” Parasites and Vectors, vol. 6, no. 1, 2013
[132] C. d. A. Marques Toledo, C. M. Degener, L. Vinhal, G. Coelho, W. Meira, C. T. Codeço, M. M. Teixeira, S. Camargo, V. Saraceni, M. Lemos, and F. Coelho, “Dengue prediction by the web: Tweets are a useful tool for estimating and forecasting Dengue at country and city level,” PLOS Neglected Tropical Diseases, vol. 11, p. e0005729, jul 2017
[133] S. Del Valle, H. Hethcote, J. M. Hyman, and C. Castillo Chavez, “Effects of behavioral changes in a smallpox attack model,” Mathematical biosciences, vol. 195, no. 2, pp. 228–251, 2005
[134] R. M. Anderson, “The role of mathematical models in the study of hiv transmission and the epidemiology of aids,” Journal of Acquired Immune Deficiency Syndromes, vol. 1, no. 3, pp. 241–256, 1988. [135] Z. Feng and J. X. Velasco Hernández, “Competitive exclusion in a vector host model for the dengue fever,” Journal of mathematical biology, vol. 35, no. 5, pp. 523–544, 1997
[136] B. Shulgin, L. Stone, and Z. Agur, “Pulse vaccination strategy in the sir epidemic model,” Bulletin of mathematical biology, vol. 60, no. 6, pp. 1123–1148, 1998
[137] M. A. Johansson, J. Hombach, and D. A. Cummings, “Mo dels of the impact of dengue vaccines: a review of current research and potential approaches,” Vaccine, vol. 29, no. 35, pp. 5860–5868, 2011
[138] M. Roberts, V. Andreasen, A. Lloyd, and L. Pellis, “Ni ne challenges for deterministic epidemic models,” Epidemics, vol. 10, pp. 49–53, 2015
[139] F. Brauer, “Mathematical epidemiology: Past, present, and future,” Infectious Disease Modelling, vol. 2, no. 2, pp. 113–127, 2017
[140] H. M. Yang and C. P. Ferreira, “Assessing the effects of vector control on dengue transmission,” Applied Mathematics and Computation, vol. 198, no. 1, pp. 401–413,2008
[141] A. Pandey, A. Mubayi, and J. Medlock, “Comparing vector host and sir models for dengue transmission,” Mathematical biosciences, vol. 246, no. 2, pp. 252–259,2013
[142] F. Ball, T. Britton, T. House, V. Isham, D. Mollison, L. Pellis, and G. S. Tomba, “Seven challenges for metapopulation models of epidemics, including households models,” Epidemics, vol. 10, pp. 63–67, 2015
[143] H. W. Hethcote, “The basic epidemiology models: models, expressions for r0, parameter estimation, and applications,” in Mathematical understanding of infectious disease dynamics, pp. 1–61, World Scientific, 2009
[144] D. P. Lizarralde Bejarano, S. Arboleda Sánchez, and M. E. Puerta Yepes, “Understanding epidemics from mathematical models: Details of the 2010 dengue epidemic in Bello (Antioquia, Colombia),” Applied Mathematical Modelling, vol. 43, pp. 566–578, 2017
[145] L. Esteva and C. Vargas, “Coexistence of different serotypes of dengue virus,” Journal of Mathematical Biology, vol. 46, no. 1, pp. 31–47, 2003
[146] V. H. Peña García, O. Triana Chávez, A. M. Mejía Jaramillo, F. J. Díaz, A. Gómez Palacio, and S. Arboleda Sánchez, “Infection rates by dengue virus in mosquitoes and the influence of temperature may be related to different endemicity patterns in three Colombian cities,” International journal of environmental research and public health, vol. 13, no. 7, p. 734, 2016.
[147] J. Heesterbeek and K. Dietz, “The concept of r0 in epidemic theory,” Statistica Neerlandica, vol. 50, no. 1, pp. 89– 110, 1996
[148] J. A. Heesterbeek, “A brief history of R0 and a recipe for its calculation,” Acta Biotheoretica, vol. 50, no. 3, pp. 189–204, 2002
[149] R. J. Smith, J. Li, and D. Blakeley, “The failure of R0,” Computational and Mathematical Methods in Medicine, vol. 2011, 2011
[150] O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, “On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in hetero geneous populations,” Journal of Mathematical Biology, vol. 28, pp. 365–382, 6 1990
[151] O. Diekmann, J. A. Heesterbeek, and M. G. Roberts, “The construction of next generation matrices for compart mental epidemic models,” Journal of the Royal Society Interface, 2010
[152] H. Khalil, “Nonlinear systems prentice hall,” Inc. second edition, USA, 1996
[153] J. K. Hale and H. Koçak, Dynamics and bifurcations, vol. 3. Springer Science & Business Media, 2012
[154] J. LaSalle, “Some Extensions of Liapunovs Second Method,” IRE Transactions on Circuit Theory, vol. 7, no. 4, pp. 520–527, 1960
[155] F. Brauer and C. Castillo Chavez, Mathematical models in population biology and epidemiology, vol. 1. Springer, 2012
[156] E. S. Allman, E. S. Allman, and J. A. Rhodes, Mathematical models in biology: an introduction. Cambridge University Press, 2004
[157] L. Esteva and C. Vargas, “Analysis of a dengue disease transmission model,” Mathematical biosciences, vol. 150, no. 2, pp. 131–151, 1998
[158] B. Goh, “Global stability in two species interactions,” Journal of Mathematical Biology, vol. 3, no. 34, pp. 313–318, 1976
[159] B. Goh, “Global stability in many species systems,” The American Naturalist, vol. 111, no. 977, pp. 135–143,1977
[160] P. Van den Driessche, M. Li, and J. Muldowney, “Global stability of seirs models in epidemiology,” Canadian Ap plied Mathematics Quarterly, vol. 7, pp. 409–425, 1999
[161] A. Korobeinikov and G. C. Wake, “Lyapunov functions and global stability for sir, sirs, and sis epidemiological models,” Applied Mathematics Letters, vol. 15, no. 8, pp. 955–960, 2002. [162] J. LaSalle, “Stability theory for ordinary differential equations,” Journal of Differential Equations, vol. 4, no. 1, pp. 57–65, 1968
[163] J. Li, D. Blakeley, et al., “The failure of r0,” Computational and mathematical methods in medicine, vol. 2011, 2011
[164] L. Ljung, System identification: Theory for the user. Upper Saddle River: Prentice Hall, second ed. ed., 1999
[165] H. M. Yang and C. P. Ferreira, “Assessing the effects of vector control on dengue transmission,” Applied Mathematics and Computation, vol. 198, no. 1, pp. 401–413,2008
[166] S. T. R. Pinho, C. P. Ferreira, L. Esteva, F. R. Barreto, V. C. Morato e Silva, and M. G. L. Teixeira, “Modelling the dynamics of dengue real epidemics,” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 368, no. 1933, pp. 5679–5693, 2010
[167] L. Esteva, G. Gómez, J. Hernández, and M. Zepeda, “Ma temáticas y epidemiología,” Ciencias, no. 24, pp. 57–63, 1991
[168] H. M. Yang and C. P. Ferreira, “Assessing the effects of vector control on dengue transmission,” Applied Mathematics and Computation, vol. 198, no. 1, pp. 401–413,2008. ISBN: 00963003. [169] R. M. May, “Uses and abuses of mathematics in biology.,” Science (New York, N.Y.), vol. 303, no. 5659, pp. 790– 793, 2004
[170] Y. Nagao, U. Thavara, P. Chitnumsup, A. Tawatsin, C. Chansang, and D. Campbell Lendrum, “Climatic and social risk factors for aedes infestation in rural Thailand,” Tropical Medicine and International Health, vol. 8, pp. 650–659, July 2003
[171] M. R. Dibo, A. P. Chierotti, M. S. Ferrari, A. L. Mendonça, and F. C. Neto, “Study of the relationship between aedes (stegomyia) aegypti egg and adult densities, dengue fever and climate in mirassol, state of São Paulo, Brazil,” Memórias do Instituto Oswaldo Cruz, vol. 103, pp. 554–560, Sept. 2008
[172] Instituto Nacional de Salud, “Manual del usuario del software SIVIGILA,” 2010
[173] World Health Organization, Indoor residual spraying: An operational manual for IRS for malaria transmission, control and elimination. World Health Organization, 2nd ed. ed., 2015
[174] R. J. Wood, “Between family variation in sex ratio in the Trinidad (T30) strain of Aedes aegypti (L.) indicating differences in sensitivity to the meiotic drive gene MD,” Genetica, vol. 46, no. 3, pp. 345–361, 1976. [175] R. Maciel de Freitas, J. C. Koella, and R. Lourenço de Oliveira, “Lower survival rate, longevity and fecundity of Aedes aegypti (Diptera: Culicidae) females orally challenged with dengue virus serotype 2,” Transactions of the Ro yal Society of Tropical Medicine and Hygiene, vol. 105, no. 8, p. 452, 2011
[176] D. Rojas Diaz, A. Catano Lopez, and C. M. Velez Sanchez, “Novel algorithm for confidence subcontour box estimation: an alternative to traditional confidence intervals,” 2019
[177] Rojas Díaz, Daniel and Vélez Sánchez, Carlos Mario, “drojasd/gsuacsb: Gsuacsb v1.0,” 2019
[178] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola, Global sensitivity analysis: The primer. Chichester, England: John Wiley & Sons, 2008
[179] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Rat to, and S. Tarantola, “Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index,” Computer Physics Communications, vol. 181, pp. 259–270, 2 2010
[180] H. M. Yang, M. d. L. d. G. Macoris, K. C. Galvani, and M. T. M. Andrighetti, “Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings,” Bio Systems, vol. 103, no. 3, pp. 360–371, 2011. [181] R. A. Marinho, E. B. Beserra, M. A. Bezerra Gusmão, V. d. S. Porto, R. A. Olinda, and C. A. dos Santos, “Effects of temperature on the life cycle, expansion, and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil,” Journal of Vector Ecology, vol. 41, no. 1, pp. 1–10, 2016
[182] D. Lizarral de Bejarano, S. Arboleda Sánchez, and M. Puerta Yepes, “Understanding epidemics from mathematical models: Details of the 2010 dengue epidemic in Bello (Antioquia, Colombia),” Applied Mathematical Modelling, vol. 43, 2017
[183] M. Martcheva, An Introduction to Mathematical Epidemiology. Springer US, 2015
[184] M. B. Feinberg and R. Ahmed, “Advancing dengue vaccine development,” Science, vol. 358, no. 6365, pp. 865–866,2017
[185] D. L. Chao, S. B. Halstead, M. E. Halloran, and I. M. Longini, Jr., “Controlling dengue with vaccines in Thailand,” PLOS Neglected Tropical Diseases, vol. 6, p. 1–11, 102012
[186] S. M. Mniszewski, C. A. Manore, C. Bryan, S. Y. Del Valle, and D. Roberts, “Towards a hybrid agent based model for mosquito borne disease,” in Proceedings of the 2014 Summer Simulation Multiconference, Summer Sim ’14, (San Diego, CA, USA), pp. 10:1–10:8, Society for Computer Simulation International, 2014
[187] T. J. Hladish, C. A. B. Pearson, D. L. Chao, D. P. Rojas, G. L. Recchia, H. Gómez Dantés, M. E. Halloran, J. R. C. Pulliam, and I. M. Longini, “Projected impact of dengue vaccination in Yucatan, Mexico,” PLOS Neglected Tropical Diseases, vol. 10, p. 1–19, 05 2016
[188] T. J. Hladish, C. A. B. Pearson, D. L. Chao, D. P. Rojas, G. L. Recchia, H. Gómez Dantés, M. E. Halloran, J. R. C. Pulliam, and I. M. Longini, “Projected Impact of Dengue Vaccination in Yucatán, Mexico,” PLOS Neglected Tropical Diseases, vol. 10, pp. 1–19, 8 2016
[189] M. Toro, A. Philippou, S. Arboleda, M. Puerta, and C. M. Vélez S., “Mean field semantics for a process calculus for spatially explicit ecological models,” in Proceedings of the Eleventh International Workshop on Developments in Computational Models, Cali, Colombia, October 28, 2015 (C. A. Muñoz and J. A. Pérez, eds.), vol. 204 of Electronic Proceedings in Theoretical Computer Science, pp. 79–94, Open Publishing Association, 2016
[190] H. M. Yang, M. L. G. Macoris, K. C. Galvani, M. T. M. Andrighetti, and D. M. V. Wanderley, “Assessing the effects of temperature on dengue transmission,” Epidemiology and infection, vol. 137, no. 8, pp. 1179–1187, 2009. [191] S. Arboleda, N. Jaramillo O., and A. T. Peterson, “Mapping environmental dimensions of dengue fever transmission risk in the Aburrá Valley, Colombia,” International Journal of Environmental Research and Public Health, vol. 6, no. 12, p. 3040, 2009
[192] “Number of reported cases of dengue and dengue hemorrhagic fever (dhf) in the americas, by country.”[193] M. Toro, A. Philippou, S. Arboleda, M. Puerta, and C. M. Vélez S., “Mean field semantics for a process calculus for spatially explicit ecological models,” in Proceedings of the Eleventh International Workshop on Developments in Computational Models, Cali, Colombia, October 28, 2015 (C. A. Muñoz and J. A. Pérez, eds.), vol. 204 of Electronic Proceedings in Theoretical Computer Science, pp. 79–94, Open Publishing Association, 2016
[194] M. Toro, A. Philippou, C. Kassara, and S. Sfenthourakis, “Synchronous Parallel Composition in a Process Calculus for Ecological Models,” in Proceedings of ICTAC’14, pp. 424–441, 2014
[195] A. Philippou, M. Toro, and M. Antonaki, “Simulation and verification in a process calculus for spatially explicit eco logical models,” Scientific Annals of Computer Science, 2013
[196] R. Barbuti, A. Maggiolo Schettini, P. Milazzo, and A. Troina, “A Calculus of Looping Sequences for Mode lling Microbiological Systems,” Fundamenta Informaticae, vol. 72, no. 13, pp. 21–35, 2006
[197] R. Barbuti, A. Maggiolo Schettini, P. Milazzo, and G. Par dini, “Spatial Calculus of Looping Sequences,” Theoretical Computer Science, vol. 412, no. 43, pp. 5976–6001,2011
[198] Q. Chen, F. Ye, and W. Li, “Cellular automata based ecological and ecohydraulics modelling,” Journal of Hydroinformatics, vol. 11, no. 3/4, pp. 252–272, 2009
[199] J. Kleijn, M. Koutny, and G. Rozenberg, “Petri Nets for Biologically Motivated Computing,” Scientific Annals of Computer Science, vol. 21, no. 2, pp. 199–225, 2011
[200] C. McCaig, R. Norman, and C. Shankland, “From individuals to populations: A mean field semantics for process algebra,” Theoretical Computer Science, vol. 412, no. 17, pp. 1557–1580, 2011
[201] M. Toro, A. Philippou, C. Kassara, and S. Sfenthourakis, “Synchronous parallel composition in a process calculus for ecological models,” in Proceedings of ICTAC’14, pp. 424–441, 2014
[202] R. De Nicola, D. Latella, M. Loreti, and M. Massink, “Rate Based Transition Systems for Stochastic Process Calculi,” in Proceedings of ICALP 2009, LNCS 5556, pp. 435–446, Springer, 2009. [203] S. Benkirane, R. Norman, E. Scott, and C. Shankland, “Measles epidemics and pepa: An exploration of historic disease dynamics using process algebra,” in Proceedings of FM 2012, LNCS 7436, pp. 101–115, Springer, 2012
[204] T. F. De Lima, R. M. Lana, C. De Senna, G. Tiago, C. T. Codeço, G. S. Machado, S. Ferreira, Lucas, L. C. De Cas tro Medeiros, and C. A. Davis Junior, “Dengue me: A tool for the modeling and simulation of dengue spatiotemporal dynamics,” International Journal of Environmental Research and Public Health, vol. 13, no. 9, 2016
[205] M. da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância das Doenças Transmissíveis, “Levantamento rápido de Índices para aedes aegypti – liraa – para vigilância entomológica do aedes aegypti no brasil: Metodologia para avaliação dos índices de breteau e predial e tipo de recipientes. ministério da saúde.” https://pesquisa.bvsalud.org/portal/resource/pt/biblio 971791
[206] C. Isidoro, N. Fachada, F. Barata, and A. Rosa, “Agent based model of aedes aegypti population dynamics,” in Progress in Artificial Intelligence (L. S. Lopes, N. Lau, P. Mariano, and L. M. Rocha, eds.), (Berlin, Heidelberg), pp. 53–64, Springer Berlin Heidelberg, 2009.
Descargas
Descargas
Publicado
Colección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.



