
12

Toward the application of artificial intelligence 
in academic content: An autonomous 
recommendation system

DOI: https://doi.org/10.17230/9789587207002lch1

Edwin Montoya-Múnera, Jose Aguilar, Julián Alberto Monsalve-Pulido,  
Camilo Salazar, Daniela Varela-Tabares, Marvin Jiménez-Narváez,  
Edwin Montoya-Jaramillo

The latest generation of new information and delivery channels is being 
produced at accelerated rates. This has made it nearly impossible to keep 
various courses updated (despite human intervention), which can limit 
the quality of virtual education and generate a systematic delay/gap in 
their learning processes. Thus, this project developed a system that uses 
big data analytics and artificial intelligence in order to gather information 
and knowledge from digital resources on the Internet, and recommend 
them to students and teachers in either blended or virtual courses. In 
this case, the digital resources mainly included texts and unstructured 
data (e.g., patents, articles, books, Wikis, etc.), audio and/or video, all of 
which can be difficult for processing and extracting value, information, 
and knowledge. It is important to note that such digital resources also 
support various courses by using tags, descriptions, keywords, logs, 
profiles, preferences, etc. Overall, the purpose of this project is to provide 
students and teachers with recommendations for the contents that best 
match their profiles and learning progress within each course.

This project, called Smart Contents (SmartCon), integrated many 
free sources and digital contents from the Internet in order to build a smart 
system that recommends the contents to different users in an educational 
context, based on big data analytics, autonomic computing, and artificial 
intelligence paradigms. This project included the following components: 
1) identifying open, high-quality digital resources such as patents, articles, 
books, etc.; 2) harvesting these sources into a data lake; 3) processing and 
transforming these sources for the analytics stage; 4) building analytics 
models to enrich the knowledge of students and teachers as well as 
the contents of courses; 5) developing a search engine for all contents 



13

and knowledge, for further retrieval by the recommendation system;  
6) defining the recommendation system, the main component of 
SmartCon, to personalize the contents to different users (e.g., students 
and teachers); 7) developing SmartLMS, an open-source learning 
management system (LMS) that uses the recommendation system 
through different plug-ins and components.

This chapter also describes the different components of the 
SmartCon project. Particularly, it presents the design of the system’s 
main aspects, including the general architecture of the autonomic 
and the intelligent recommendation system as well as the hybrid and 
emotional extensions. It also presents examples of some of the mining 
tasks developed during the project as well as the main characteristics 
of the developed prototype. More details regarding the methodologies, 
experiments, and results, etc. have been presented in various works 
published during this project (Aguilar, Salazar, Velasco, Monsalve-Pulido, 
& Montoya, 2020; Jimenez, Aguilar, Monsalve-Pulido & Montoya, 2020; 
Monsalve-Pulido, Aguilar, Montoya, & Salazar, 2020; Salazar, Montoya & 
Aguilar, n.d.; Salazar, Aguilar, Monsalve-Pulido, & Montoya, 2020; Salazar, 
Aguilar, Monsalve-Pulido & Montoya, n.d.; Varela, Aguilar, Monsalve-
Pulido & Montoya, n.d.-a,b). An additional goal of this chapter is to 
present all of these works and show how they are coherently integrated.

The remainder of this chapter is organized as follows. Section 2 
describes the related works with SmartCon and the domains that are 
covered by this project, while Section 3 presents the evolution of the 
architecture for SmartCon. Section 4 describes the various mining tasks 
conducted during the project in order to extract knowledge for the 
recommendation system, while Section 5 explains the proof of concept or 
the prototype of SmartCon as well as some actual courses that employed 
this prototype. Finally, Section 6 presents the main contributions, 
conclusion, and future recommendations.

Related Works

Recommender systems have been widely studied in the literature, due 
to their vast array of applications. In fact, there are many applications 
for the recommendation of products, movies, news, academic resources, 



14

etc. (Adomavicius & Tuzhilin, 2005). In the literature, recommender 
systems have been classified into four main categories, according to 
how the recommendation is made: 1) content-based recommendations 
(CB); 2) collaborative filter recommendations (CF); 3) intelligent 
recommendations; and 4) hybrid recommendations (Balabanovic & 
Shoham, 1997). In previous research (Aguilar, Valdiviezo-Díaz, & Riofrio, 
2017), the authors developed a general framework for an intelligent 
recommendation system integrating the processes of learning, inference, 
etc. This system consisted of the following components: knowledge 
modeling, learning methods, and reasoning mechanisms.

According to Shardanand & Maes (1995), the systems that perform 
content-based recommendations include some limitations. For example, 
they are not very efficient at recognizing the differences between two 
items of diverse qualities, even if the items include a large number of 
words in common. This makes these systems somewhat poor at evaluating 
item quality, since they significantly depend on users’ perceptions. 
Additionally, Shardanand & Maes confirmed that it is not easy to find 
items that are apparently not of interest to users, but are actually good 
enough to be recommended. These types of problems are not frequent in 
collaborative filtering systems, since they are not based on the contents 
of the items, but on other users’ opinions about the recommended item 
(Cacheda, Carneiro, Fernández, & Formoso, 2011). In this regard, a 
user’s profile is based on the ratings given to the items. This feature also 
allows the system to be able to recommend items without analyzing their 
contents, thus making it useful to recommend any type of element. An 
example of this can be found in the cases of Ringo (Shardanand & Maes, 
1995) and Video Recommender (Hill, Stead, Rosenstein, & Furnas, 1995), 
which are e-mail and web-based systems for recommending music and 
movies, respectively.

As for the recommendation systems based on collaborative filtering, 
they also present problems such as scalability, complexity of their models, 
sensitivity to data changes (Cacheda et al., 2011), sparsity of the rating 
matrix (Huang, Chen, & Zeng, 2004; Sarwar, Karypis, Konstan, & Reidl, 
2001), cold start (Schein, Popescul, Ungar, & Pennock, 2002), shilling 
(Chirita, Nejdl, & Zamfir, 2005; Lam & Riedl, 2004), etc. Due to these 
issues, many recommending systems use a hybrid approach that mixes 
content-based and collaborative filtering methods. In particular, this can 



15

minimize the problems that occur when they utilize a single approach. 
Examples of hybrid recommender systems exist in the academic world 
because the aim is to personalize the teaching-learning process. A general 
architecture for a hybrid recommendation system, which uses effort-based 
learning to improve quality over time, is proposed in Golovin & Rahm 
(2004). In the application of the recommendation algorithms, the authors 
included context variables such as content, user, and time. Another 
proposal of a hybrid architecture, which recommends open courses 
and educational resources, is presented in Vladoiu, Constantinescu, & 
Moise (2013). This architecture created a combination of two types of 
recommendations: one based on enhanced cases (guided by a quality 
model), and another based on user feedback (collaborative).

In addition, an interesting example of a recommendation system 
architecture in the academic arena is the one proposed in Zhu, Ip, Fok, 
& Cao (2008), where a recommendation methodology based on multiple 
hierarchical intelligent agents is presented. This methodology performed 
static and dynamic modeling of the users, and offered several functions, 
including the generation and adjustment of learning plans, personalized 
recommendations, and learning progress assessments in real time.

One of the most important elements in teaching-learning processes 
is the construction of knowledge based on collaboration. For example, 
in Knob, Esteves, Granville, & Tarouco (2017), a multi-agent, client-
server application architecture is proposed to recommend different 
types of activities. More specifically, this architecture considers the 
set of functionalities in the application and the operations necessary 
to access them for the exchange of knowledge in virtual communities. 
Such functionalities are then used by the personal agents in Android, 
who execute their tasks while achieving their individual and collective 
objectives. This proposed architecture has been mainly used in the context 
of smart cities, helping them achieve the objectives of decentralization 
for the management of communities.

Moreover, educational systems can take advantage of the emotional 
state of students to enhance their learning processes, as evidenced by 
numerous investigations. Some studies have even built emotional-aware 
learning systems, and compared their performance to non-emotional-aware 
learning systems in order to observe any improvements in students’ academic 
performance (Faria et al., 2017; Pekrun, 1992; Shen, Wang, & Shen, 2009). 



16

Other authors have analyzed the correlation between emotional features 
and the evaluations of students, thus highlighting the relationship between 
emotions and learning performance (Chauhan, Agrawal, & Meena, 2019; 
Immordino-Yang & Damasio, 2007; Yu et al., 2018).

In a related study, Shen et al. (2009) found a 91% increase in 
e-learning performance by using emotional data. This increase was 
especially observed in user-centered learning. They also noted the lack 
of research in detecting emotions during the learning process in real 
time. Meanwhile, Pekrun, Goetz, Titz, & Perry (2002) and Yu et al. 
(2018)  noted that positive emotions can promote self-regulation among 
students, whereas negative emotions can lead to dependence on external 
orientation. In general, these studies assume that not all emotions are 
relevant to learning, but only a small subset of them, with different 
investigations proposing several emotions related to learning. For example, 
Shen et al. (2009) focused on four emotions and observed a 91% increase 
in e-learning performance by only analyzing this subset of emotions, 
compared to a system with no emotion analysis. It is also important to 
consider that the type of education (e.g., self-learning, classroom lectures, 
group discussions, etc.) implies non-identical processes and requires 
different considerations.

Finally, several works have proposed intelligent recommender 
systems, some of them in the e-learning domain. For instance, Tarus, Niu, 
& Mustafa (2018) reviewed literature on ontology-based recommenders 
for e-learning. They also categorized the different recommendation 
techniques used in ontology-based, e-learning recommenders, according 
to the knowledge representation technique, ontology type, and ontology 
representation language in ontology-based recommender systems, in 
addition to the types of learning resources recommended by e-learning 
recommenders. Obeid, Lahoud, El Khoury, & Champin (2018) presented 
an approach for developing an ontology-based recommender system, 
with improved machine learning techniques, to orient higher education 
students. The main objective of their ontology-based recommender 
system was to identify students’ requirements, vocational strengths 
and weaknesses, interests, preferences, and capabilities to recommend 
the appropriate major and university for each one. Finally, Vijayakumar, 
Vairavasundaram, Logesh, & Sivapathi (2019) presented a new travel 



17

recommendation system employed on a mobile device that generates 
personalized travel planning, including multiple points of interest (POIs). 
This personalized list of recommended travel destinations was based on 
a heat map of previously visited and highly relevant POIs.

Architecture

This section presents the architecture of the recommendation system for 
virtual learning environments (VLEs) proposed by Monsalve-Pulido et al. 
(2020). This architecture includes four sections, beginning with a general 
overview of the architecture, followed by a specific description of the 
autonomous recommendation system. Next, the hybrid recommendation 
component is presented in detail, after which its extension as an affective 
recommendation system is described.

General Architecture

SmartCon is a project that harvests millions of free and open digital 
resources on the Internet or “Internet Open Resources” (IORs), which 
are stored in a data lake for further processing. In the harvesting stage, 
the sources, crawling, and processing of the raw data are identified 
in a normalized manner. Next, the data is processed through a search 
engine and a machine learning (ML) processor, after which it is used as 
an indexer and for ML techniques. In this case, the search engine is an 
implementation of the first version of the recommendation system, which 
is based on the data contents (i.e., the RecSys).

Overall, the ML processor follows three objectives: 1) to process the 
data and enrich the metadata indexed in the search engine; 2) to generate 
new data and models to improve the precision of the recommendations; 
and 3) to implement new features, such as clustering, top-n-related 
data, and collaborative filtering, incorporated into the RecSys Version 2 
(i.e., smart and collaborative filtering RecSys). Meanwhile, the RecSys 
engine performs three tasks: 1) it pre-calculates a recommendation for 
each course-student pair; 2) it receives the requests from the LMS and 
returns the recommendations; and 3) it processes logs, favorites, students, 
and course profiles. Finally, the LMS is a learning environment in which 



18

students and teachers access courses, including contents and activities, 
and receive recommendations from SmartCon. Figure 1 presents the 
general architecture of SmartCon.

Figure 1. The General Architecture of SmartCon

Search
Engine

RecSys
Engine

LMS

Crawler &
Dataprep

Indexer

IOR
recommendations

teacher students

models

database

datalakeInternet Open
Resources (IOR)

index

ML models

Source: Prepared by the authors

Autonomous Recommendation System Architecture

This section presents the architecture of the autonomous recommendation 
system (ARS) proposed by Monsalve-Pulido et al. (2020). This 
architecture is based on two general principles. The first is autonomous 
computing using a self-managed computing approach, while the second 
is an intelligent recommendation system (Aguilar et al., 2017). Figure 2 
describes the architecture of the ARS for teaching-learning processes in 
VLEs. Overall, the architecture is composed of three general phases: 1) 
the creation of academic courses; 2) the utilization of digital resources by 
students; and 3) the extraction of all of the necessary context variables in 
order for the architecture to recommend academic contents to students 
and teachers.



19

Figure 2. Architecture of the ARS

Boundary
context

External
context

Context-Aware

External repository of learning objects

LCMS
Repository Learning objects

Autonomous
Recommendation System

Metadata

Instructional
Design

Student

Ph
as

e 3

Ph
as

e 2

Ph
as

e 1

Internal
context

Learning
Objectives -

Standar CEDS
Process ADDIE

Teacher

Learning Style - CEDS

Emotion Usage

Metadata LOM

Clasi�cation Teaching style

Structure Course

Metadata CEDS - Domain
Entity Schema (DES)

Di
gi

ta
l R

es
ou

rc
e

Source: Prepared by the authors

Table 1 describes the objective of each phase of the architecture as 
well as the metadata used.

Table 1. Phases of Architecture

Phase Objectives Metadata

Phase 1 Creation of the academic 
course structure and 
instructional design.

ADxuation (Kruse, 2002)
Common Education
Data Standard (CEDS) (NCES, 2014)

Phase 2 Extraction of student 
information (e.g., academic 
information–learning styles) 
and information from 
academic digital resources 
(e.g., internal and external 
repositories).

Learning Object Metadata (LOM) (of the 
IEEE P1484.12.2/D1, 2002).
Common Education Data Standard 
(CEDS) (Kruse, 2002)



20

Phase 3 Extraction of context 
variables (e.g., internal, 
external and border) for the 
personalization of learning.

Learning Object Metadata (LOM) (of the 
IEEE P1484.12.2/D1, 2002).
Common Education Data Standard 
(CEDS) (Kruse, 2002)
Social networks
Global Positioning System, others.

Source: Prepared by the authors

Intelligent Dimension
The ARS is defined by the intelligent dimension shown in Figure 3, 
which is composed of knowledge representation, learning methods, 
and reasoning mechanisms. Thus, the intelligent dimension of the ARS 
includes three main layers: 1) acquisition; 2) modeling; and 3) reasoning 
and verification.

Figure 3. Architecture of the Intelligent Dimension 

Digital Resource

Context

Collaborative Filtering

Recommendation Service

Content-Based

Knowledge-Based

Course
User Logs

Acquisition

Modeling

Ontologies

DP Feature Vector

Recommendations

DR Rating

Reasoning
and Veri�cation

Descriptor
Dataset

Descriptor
Extraction User Actions

Descriptor
Extraction

Social Network

USER

Knowledge DB

Hybrid

Source: Prepared by the authors



21

Acquisition: In this layer, the information is extracted from two 
general areas. The first one is the student information generated in 
the teaching-learning process, which includes identifying the learning 
styles and all of the contextual information registered in the VLEs, social 
networks, connection logs, etc. The second one is the academic content, 
which includes extracting the information through the metadata of the 
educational process, including academic digital resources (e.g., books, 
scientific articles, learning objects, patents, etc.).

Modeling: The modeling layer stores the information from the results 
of the acquisition and reasoning and verification layers in a knowledge 
database. It begins with structured storage based on the metadata of 
digital resources, academic courses, students, and contexts that interact 
in the acquisition layer. Moreover, the recommendation results are stored 
in this layer by means of classification vectors, while the ontology results 
are from the reasoning and verification layer.

Reasoning and verification: The main objective of this layer is to 
effectively recommend digital academic content to teachers and students. 
Different reasoning mechanisms can be used in this layer (e.g., deductive, 
inductive or abductive). This recommendation process also uses hybrid 
recommendation techniques by combining the collaborative filtering, 
content- and knowledge-based filters.

Autonomous Dimension
The autonomic architecture of the recommendation system aims to 
guarantee self-management and adaptability in any context, without 
human intervention. In order to meet the autonomic objective, 
the Monitor-Analyze-Plan-Execute-Knowledge (MAPE-K) model 
(Vizcarrondo, Aguilar, Exposito, & Subias, 2017) was used, as described 
in Figure 4.



22

In Table 2, the components of the autonomous dimension are 
described by means of the iterative processes of the MAPE-K model.

Table 2. Components of the Autonomic Dimension

MAPE-K Objective Knowledge DB

Monitor Extract the properties of the digital 
resources, academic courses, and context 
information.

Store-consult

Analysis–
Planning

Process the information from the monitor 
stage. Run the hybrid recommendation 
filter.

Store and query results 
to estimate future 
recommendations

Planning–
Execution

Deploy recommendations on the virtual 
learning platform, according to the needs 
of teachers and students.

Store-consult

Source: Prepared by the authors

Generic Hybrid Adaptive Architecture

Various techniques have been proposed for recommending items to users 
in different contexts and domains. They are mainly classified into four 

Virtual learning
environment

Digital Resource

Plan - Execute

Monitor

Analyze - Plan

User

Digital Resource

Collaborative Filtering

Hybrid

Content-Based Knowledge-Based

Course

Course Context

Knowledge DB

Logs

Descriptor
Extraction

Descriptor
Dataset

Descriptor
Extraction

Social Network

Figure 4. Architecture of the Autonomous Dimension

Source: Prepared by the authors



23

approaches: 1) content-based (CB); 2) collaborative filtering (CF); 3) 
knowledge-based; and 4) hybrid. However, many others have emerged 
with the vast amount and variety of available data.

CB algorithms recommend items that match the user’s preferences 
or profile, which is mainly defined by the items that the user has previously 
chosen. They also use keywords, tags or weights to characterize the 
objects. For example, the TF-IDF representation is a frequently used 
tool to obtain certain features (Aguilar et al., 2017; Burke, 2007).

CF approaches are based on the user’s behavior and rating patterns in 
relation to other users. In general, collaborative techniques can be either 
memory- or model-based. The first one uses the concept of neighborhood 
to find similar users (or items), while the second type is derived from 
historical data to make predictions (Burke, 2002, 2007).

Given the strengths and weaknesses of each technique, such as the 
cold start problem when there is a lack of data, hybrid approaches have 
been widely used to improve performance by combining different types 
of recommendation algorithms, also known as “hybridization methods.” 
There are many ways in which they can be combined, most of which are 
presented as follows (Burke, 2002, 2007).

• Weighted: The scores are numerically combined.
• Switching: The components are turned off and on, according to 

certain criteria.
• Mixed: The output from different recommenders are presented 

together.
• Feature combination: The features from different sources are 

combined into a single algorithm.
• Cascade: The output from one technique is used as an input 

feature for another.
• Meta-level: The model learned by one algorithm is used as the 

input for another.
Despite the improved performance over single algorithms, hybrids 

also present certain challenges, especially when they are implemented in 
actual scenarios. It is well known that data varies over time and that there 
is no static configuration that will optimally work for all recommendation 
requests. Thus, the adaptability of the system has been garnering interest, 
particularly as more data are emerging and more digital environments are 
requiring this type of service.



24

In Figure 5, a generic adaptive hybrid architecture is proposed, which 
follows the dynamic behavior of the environment through the use of 
metrics (i.e., meta-characteristics), from which the hybrid configuration 
for the recommendation is determined.

Figure 5. Generic Hybrid Adaptive Architecture

Database

Feedback systemPrediction

USER

Meta features

Pro�ling

Hybridization engine

Data subset

Alg1 Alg2 Alg3 Alg4

Source: Prepared by the authors

As shown in this figure, the architecture can adapt to different 
domains. In our case, the users would be students in a VLE. When a 
student enters the system for the first time, he/she completes a survey 
with their preferences, after which the system reduces the universe of 
interest for the student, since computing the subsequent processes with 
a large number of documents would be inefficient.

In general, the algorithms that are combined in hybrid systems should 
be of different types in order to take advantage of their characteristics 
and compensate for their weaknesses. The red block, identified as 
“meta-features”, is a key component in this system that represents a set 
of numerical indicators used to describe the users (or items) at a specific 
moment. The idea is that the high or low values of these dynamic variables 
reflect multiple characteristics of the context, which can be used to 
configure the hybrid blend in a more optimal manner.



25

Meanwhile, the feedback engine is responsible for capturing the 
logs and other variables that allow the system to perform different tasks 
such as checking the usefulness of the recommendations (and potentially 
optimizing them), recalculating the meta-features to update the context 
status, and enriching the data inputs for the algorithms (mainly the 
collaborative-based ones).

The generic hybrid adaptive architecture is incorporated into the 
autonomous recommendation architecture, as shown in Figure 6.

Figure 6. Incorporation of the Generic Hybrid Adaptive  
Architecture into the ARS

Virtual learning
environment

Digital Resource

Plan - Execute

Monitor

Analyze - Plan

User

Digital Resource

Collaborative Filtering

Hybrid

Content-Based Knowledge-Based

Course

Course Context

Knowledge DB

Logs

Descriptor
Extraction

Descriptor
Dataset

Descriptor
Extraction

Social Network

Database

Feedback systemPrediction

USER

Meta features

Pro�ling

Hybridization engine

Data subset

Alg1 Alg2 Alg3 Alg4

Source: Prepared by the authors

The incorporation of this component into the ARS is achieved 
through the MAPE-K model. More specifically, it occurs in the “Analysis–
Planning” phase, in which it executes the hybrid recommendation 
filter (i.e., collaborative filter, based on content and knowledge), thus 
defining the correct combination for guaranteeing high-quality content 
recommendations (see Varela et al., (2020a,b) for more details).



26

Generic Architecture of an Affective Recommender  
System for e-learning Environments

The proposed architecture for an affective recommender system is 
presented in Figure 7. It consists of five major components: 1) user; 
2) personal characteristic engine; 3) VLE; 4) emotion engine; and 5) 
resources. Briefly, the user component stores all of the information 
regarding the user’s profile, while the personal characteristic engine 
extracts personal characteristics from the user such as personality traits 
and learning style. Moreover, the VLE component is the e-learning 
environment of the user, while the emotion engine captures (but does 
not store) the emotional information of the user and the course contents 
(i.e., the learning resources). Moreover, the resources component stores 
the metadata of the learning resources and the emotional logs of the 
user when interacting with the contents (see Salazar, Montoya & Aguilar 
(n.d.) for more details).

Figure 7. Generic Architecture of an Affective Recommender System

VLE

USER

Personal
characteristics engine

Emotion
engine

Recommender
algorithm

Final
recommendation

Resources

Source: Prepared by the authors



27

The proposed flow is as follows. A student enters the VLE and 
registers him/herself. During the registration process, personal information 
is captured, and questionnaires regarding personal traits and learning 
styles are completed. Additionally, the expertise level of the student can 
be obtained by using quizzes or questionnaires during registration. In this 
case, such processes are executed by the personal characteristics engine. 
All of this information is then stored in the user’s profile, except for the 
expertise level, which is stored in the VLE database.

When a student is registered, he/she can log in on the platform 
and interact with the different contents. While the student is using the 
contents, several logs are captured by the VLE logger and stored in the 
VLE database. Meanwhile, the emotion engine captures the students’ 
emotional information before, during, and after using the contents through 
multiple sources such as a camera, microphone, questionnaires, etc. Such 
sources are low-invasive and unobtrusive when obtaining such information 
during the learning process. The collected emotional information is then 
stored in the Resources module, in a special database. This information 
not only includes the emotions felt by the student in a specific course, 
but also some metadata of his/her interactions (e.g., timestamps).

The emotion engine is also in charge of extracting emotional 
information from the contents, and assigning such aspects, emotional tags/
values that can be used for the recommender algorithm. Moreover, the 
Resources module is in control of storing all of the resource information, 
including the aforementioned emotional tags/values and the emotional logs 
from the student using the resources. Since learning styles, expertise levels, 
and (in some cases) personality traits are dynamic, the personal characteristic 
engine periodically implicitly assesses these characteristics through logs or 
explicitly administers questionnaires to the student in the VLE.

Finally, the recommender algorithm collects the information from 
the user’s profile, VLE logs, emotional logs when interacting with the 
resources, his/her current emotional state, and the metadata of the 
resources in order to generate personalized content recommendations. 
The recommendation logs are then stored in the VLE for analyzing the 
performance of the recommendations, and boosting the recommender 
algorithm.

The generic hybrid adaptive architecture is incorporated into the 
autonomous recommendation architecture, as shown in Figure 8.



28

The incorporation of this component into the ARS is carried out 
through the MAPE-K model, specifically in the “Monitor” and “Plan–
Execute” phases. In this case, the “Monitor” phase recognizes the 
emotions of the student, while the “Plan–Execute” phase executes the 
emotional recommendation filter to exploit this source of information, 
and to guarantee high-quality content recommendations.

Mining Tasks

Content Analysis

Content Feature Extraction
The classification of the contents was performed according to topics and 
keywords, using the Latent Dirichlet Allocation (LDA) technique. This 
topic generative model is widely used in natural language processing 
(NLP) for topic modeling and other tasks. It also generates K topics (K, 
as a tunable parameter) from the documents in a corpus (i.e., a collection 
of documents), and estimates two distributions: 1) the distribution of 

Virtual learning
environment

Digital Resource

Plan - Execute

Monitor

Analyze - Plan

User

Digital Resource

Collaborative Filtering

Hybrid

Content-Based Knowledge-Based

Course

Course Context

Knowledge DB

Logs

Descriptor
Extraction

Descriptor
Dataset

Descriptor
Extraction

Social Network

VLE

USER

Personal
characteristics engine

Emotion
engine

Recommender
algorithm

Final
recommendation

Resources

Figure 8. Visualization of the Emotional Architecture in the ARS

Source: Prepared by the authors



29

topics in a document; and 2) the distribution of terms in a topic. In 
addition, this technique not only treats documents in regard to their 
relevance to the topic, but it also extracts two types of metadata from 
the contents: 1) keywords; and 2) descriptors of textual data. Moreover, 
the LDA technique gives a percentage regarding the membership of a 
document to a topic, i.e., the document is assigned to the topic with a 
higher percentage.

On the other hand, keywords were assigned as follows. They were 
extracted from the topic to which each document belonged (to a greater 
extent), taking the top p as more relevant in terms of the topic. In 
other words, for each document, the LDA technique assigned a set of K 
membership percentages of the specific document to each topic, after 
which the topic to which the document belonged the most was selected. 
This technique also gave a set of m (m = number of different terms in the 
corpus) relevance of each term to each topic. The top p relevant terms 
in the previously selected topic were then chosen as the keywords of the 
specific document. In our experimentation, p was set to 5.

Finally, two types of metadata were used for enhancing the generated 
recommendations. The keywords were then added to the information 
retrieval system. The intention was to generate keywords for all of the 
documents in order to generate better recommendations (see Aguilar et 
al. (2020) for more details).

Content Grouping
Content grouping was performed utilizing the textual descriptors 
(extracted with the LDA technique) to calculate similarities and 
generate recommendations. For extracting the textual descriptors, the 
set of memberships of each document to each topic was selected, thus 
obtaining a K-dimensional vector for each document and indicating the 
percentage of the membership of the document to each K topic. These 
vectors were primarily composed of low membership percentages, with 
only a few topics, presenting a considerable percentage for each document.

Moreover, the vectors representing the textual data of the documents 
were used to calculate similarities between them. This was helpful for 
providing pre-calculated recommendations for the students. For example, 
when a student rates the content as relevant, he/she may be interested 
in similar contents for learning. Thus, with the vector of a document, the 



30

cosine similarity was used for calculating the top p most similar contents 
and recommending them to the student that rated the document as 
relevant (see Aguilar et al. (2020) for more details).

Audio Feature Extraction
In general, many academic resources found on the Internet are multi-
modal objects (e.g., texts, audio, images, video). Thus, it was necessary 
to have efficient methodologies for extracting the descriptors that allow 
the resources to be characterized and recommended to the students and 
teachers in an appropriate manner.

Traditionally, the extraction of audio descriptors consists of extracting 
the text content from the audio, and then performing text mining. 
However, there is a significant amount of audio (i.e., non-text) information 
contained in many learning resources (e.g., video tutorials) that is not 
exploited, including frequency (in Hz), loudness or sound intensity (in 
decibels), reverb (in sec), etc. In some cases, the audio data does not 
include speech. As a result, no extraction of text content is possible.

In this project, an automatic feature engineering methodology was 
proposed for the audio data, which can automatically extract, analyze, 
and select the best features for such data (Jimenez et al., 2020). In this 
case, different types of characteristics in the audio data were considered 
such as sound engineering, basic statistics, and the time-series domain. 
In regard to the latter, each audio sample was considered as a time-series 
set, since the set of variables was measured at different times, and each 
variable (i.e., the time-series) was characterized by a set of time-series 
descriptors. The proposed approach can also be developed in different 
ways, since various methods of exploring combinations of characteristics 
(e.g., genetic algorithms) and different types of evaluation functions 
can be used to select the characteristics, with some based on grouping 
or classification metrics, and others based on information theory (see 
Jimenez et al. (2020) for more details).

Emotion Recognition

For recognizing the emotions of the students, three sources of information 
(i.e., modalities), which were non-invasive or obtrusive, were used:  
1) the audio from the student’s speech was captured by a microphone; 



31

2) the facial expressions were captured by a camera; and 3) the text was 
obtained from student’s interactions such as the reviews of the contents 
and related chats. As for the emotion recognition process, it was performed 
in two phases: unimodal and multi-modal. In the first phase, the data was 
analyzed separately from each modality in order to obtain the recognition 
by each modality, while the second phase consisted of fusing the decisions 
from the modalities to obtain a more robust final recognition. These steps 
are described in the following sub-sections (see Salazar et al. (2020, n.d.) 
for more details).

Unimodal Phase
In this project, each modality was separately processed in the following 
order: 1) feature extraction; 2) feature selection; and 3) recognition. For 
the audio modality, 6,373 features (interspeech 2013 compare feature 
set (Schuller et al., 2013)) were extracted from each audio sample. For 
the video modality, 68 facial landmarks were extracted, after which the 
distances between each landmark (normalized by the height of the face 
detected) was used as the feature for each image. Meanwhile, in order 
to summarize the frames in a video, the average of the frames’ features 
in the video was used, resulting in a total of 2,278 features per video.

As for the texts, two knowledge bases were used for extracting 
the affective information from each word: Senticnet 5 (Cambria, Poria, 
Hazarika, & Kwok, 2018) and AffectiveSpace (Cambria, Fu, Bisio, & 
Poria, 2015). From Senticnet 5, seven features were extracted from each 
word, i.e., five continuous and two categorical. From AffectiveSpace, 100 
continuous features were extracted for each word. Moreover, for the text, 
105 continuous and two categorical features were extracted. In order 
to summarize the features of words in a text, the percentiles 0, 25, 50, 
75, and 100 were used for continuous variables, while the summation of 
categories was used for each categorical feature, resulting in 441 features 
(i.e., 105 continuous * five percentiles + two categorical * eight classes).

When all of these features were extracted, the relevant ones were 
selected in the following three ways (i.e., filters): 1) removing the features 
with a variance lower than 1 * 10−4; 2) avoiding multicollinearity by only 
keeping the features with a variance inflation factor (VIF) lower than 
10; and 3) conserving the characteristics with a relevance greater than 



32

1 * 10−3. This relevance was calculated by using a random forest model 
and utilizing the information it provided about the importance of the 
variables. At the end of the feature selection process, 131 aural, 21 facial, 
and 224 textual features were selected. In addition, unimodal models 
were constructed for each modality, with the ML techniques including 
support vector machines (SVM), random forest, and partial least squares 
(PLS) regression. Overall, PLS regression provided the best results for 
each modality in terms of R2 and relative error of standard deviation.

Multi-modal phase
This phase fused the features or recognitions obtained from each modality 
in the previous phase, and generated final robust recognition results by 
using the information from the three modalities. In virtual education, 
students are, in general, not writing or talking all of the time. Thus, audio 
and textual data are only available at certain moments. For this reason, 
the multi-modal fusion model must deal with the missing data (i.e., the 
missing modalities).

Overall, three approaches were proposed and compared, with two 
based on decision-level fusion and one based on feature-level fusion. 
The first approach concatenated the recognition from each modality and 
filled in the missing modalities with zeros, obtaining a six-dimensional 
vector as the input for the model. The second approach used recurrent 
neural networks, which varied the input length and dealt with the missing 
modalities. Finally, the third approach was very similar to the first, but it 
concatenated the extracted features and filled in the missing modalities 
with zeros. Moreover, the models used for the three approaches were 
different light architectures of neural networks, due to the possible 
scalability issues a VLE could face.

Pilot Testing

This section introduces the technological development process of 
SmartCon. It also describes the use of SmartCon in the hybrid and virtual 
courses at EAFIT University.



33

Design, Development, and Implementation

SmartCon is a system composed of several reference architectures that 
integrate big data, data analytics, artificial intelligence, and software 
development technologies into one product. The general architecture 
of SmartCon is defined by three main modules, as shown in Figure 9.

Figure 9. General Architecture of SmartCon

data
Storage and

DataPret
RecSys
Engine LMS

teacher

students

Internet Open
Resources (IOR)

Source: Prepared by the authors

• IORs: The Internet includes many digital resources that can be 
used to help various learning activities. However, the main issue 
is how teachers or students can find appropriate content among 
the millions of resources. Thus, the first step is to identify the 
main resources on the Internet.

• Data Storage and Data Prep: All of the resources are collected into 
a data lake using different types of robots and crawlers. The 
documents and resources are then pre-processed to standardize 
and facilitate their further utilization in the data mining tasks.

• RecSys: This module is based on two components: 1) a search 
engine; and 2) an application that implements a recommendation 
system founded on the content-based, collaborative filtering, and 
hybrid methods. The RecSys represents the core of SmartCon 
because it integrates the different models of analytics, ML, and 
artificial intelligence. In addition, it not only offers several web 
services to the LMS in order to send recommendations to the 



34

courses, teachers, and students, but it also exposes web services 
to manage other features, such as profiles, favorites, caches, logs, 
etc., which will improve future recommendations.

• LMS: This is an application in which courses are managed, 
teachers perform instructional design, contents are loaded, and 
students interact with such aspects. In order to integrate this 
LMS in SmartCon, some plug-ins and adapters were developed. 
Moreover, the LMS received the recommendations from the 
RecSys module, and it managed several features that improved 
the recommendations through the learning process.

SmartCon Detailed Architecture
Based on the architecture described in Figure 9, SmartCon defines the 
components presented in Figure 10:

Figure 10. A Detailed Architecture of SmartCon

Crawler

Apache
Soir

LMS
-moodle-

RecSys v1
Content-based

RecSys v2
Collaborative-�lter & ML

ML modelsIndexer

DataPrep
(ETL)

Search & 
Retrieval

teacher

students

Datalake/CuratedDatalake/Raw

solr-index

Database
precalculated

IOR recommendations

Database
-recsys-logs

-favorites
-pro�les

* articles (arxiv, pubmed, doaj, etc)
* books

* patents
* Learning Objects

* wikipedia
* stack-over�ow

* etc Datalake/Re�ned

Internet Open
Resources (IOR)

IOR
recommendations

student pro�le
& favorites

course pro�le
& favorites

query

results2

results1

tags-course
Course 1

CourseN

logs

Source: Prepared by the authors

• IORs: SmartCon identifies different categories and sources, which 
are described in Table 3. These digital resources are mainly texts 
in different formats (e.g., PDF, HTML, TXT, etc.), characterized 



35

as unstructured or semi-structured. Nevertheless, SmartCon also 
considers the resources from audio, video or other formats.

Table 3. Categories of Digital Resources

Category Source (MD: Metadata & FT: full-text)

Articles * Arxiv (MD & FT) * Pubmed (MD) * DOAJ (MD) * OpenAire 
(MD)

Patents * WIPO (MD) * USPTA (MD)

Books * BOAJ (MD)

Wikis * Wikipedia-English (FT) * Wikipedia-Spanish (FT)

Communities * Stack-overflow (FT)

Learning Objects * Merlot (MD)

Source: Prepared by the authors

• Harvester: SmartCon collects near 30 million digital resources 
among the full-texts and metadata. All of the data is stored in a 
data lake (i.e., the raw zone), after which it is processed by the 
Data Prep-ETL module. After all of the data is curated, it is stored 
back in a data lake (i.e., the curated zone), and then it is ready to 
be indexed and analyzed by ML techniques. The main purpose 
of the Data Prep module is to filter some fields by source and 
place all of the documents in the same format in order to facilitate 
further processing (i.e., indexing and data mining).

• Indexer: The Indexer places the normalized IORs into a search 
engine. In this project, we used Apache Solr. This search engine 
supported the first version of the recommendation system, which 
was content-based using an information retrieval system.

• ML Models: The core of SmartCon is that the models are 
implemented using ML techniques. In the ML stage, we 
designed and implemented several ML models (supervised and 
unsupervised). These models focused on improving the metadata 
to be indexed into the search engine, and generated new data to 
support the RecSys.



36

• Search Engine: SmartCon uses an information retrieval system 
based on Apache Solr, which is a popular open-source software to 
index, search, and retrieve multiple types of files. Apache Solr is 
based on Apache Lucene. Thus, it supports full-text data (PDF, 
HTML, JSON, CSV, DOC, etc.), which includes the data sources 
in SmartCon. The standard file format indexed by Apache Solr 
is CSV.

• Recommendation System (RecSys) Engine: SmartCon uses two types 
of RecSys: content-based and collaborative filtering. Content-
based RecSys (based on Apache Solr) is a search engine that 
retrieves relevant documents, according to certain keywords or 
tags specified by the teacher in the course’s sections and by the 
students in their personal preferences in the LMS. In this case, the 
RecSys functions as a traditional search engine, but it is smarter, 
since the students are unaware of how the documents are selected 
and organized according to their contexts, profiles, and behaviors. 
As for collaborative filtering, it is based on ML. More specifically, 
this RecSys merges several approaches such as hybrid RecSys, 
collaborative filtering through the use of the RecSys, and the logs 
from the LMS (Moodle). The main drawback of recommendation 
systems based on collaborative filtering is the cold start. In order to 
solve this problem, the RecSys collects various data from the LMS, 
including logs related to the contents accessed by the students 
(either from the course or from SmartCon), interactions among 
the students, etc.

• LMS: Finally, the most important module of the architecture is 
the LMS, in which teachers and students interact and receive 
recommendations from SmartCon. Within the LMS, teachers 
can define the course profiles (e.g., tags per course and sections, 
categories and sources of interest, language, etc.), and manage 
favorite contents suggested by SmartCon (e.g., contents found on 
SmartCon or external links), while students can define their own 
profiles (e.g., categories, sources, language, favorites, etc.). This 
module is also implemented by using an open-source platform called 
“Moodle”, which is a state-of-the-art LMS from the free-software 
environment. Additionally, Moodle interacts with SmartCon in  



37

four ways: 1) through plug-ins and blocks developed within 
SmartCon; 2) by activating the modules of the course and student 
profiles; 3) by accessing the graphical user interface (GUI) of 
SmartCon to search for a specific course or student; and 4) by 
exposing some web services to send logs and information toward 
RecSys. Moreover, SmartCon can support any legacy or new Moodle.

Big Data Architecture
SmartCon includes the characteristics related to the “5Vs” of big data:  
1) Volume: the ability to store high volumes of data (gigabytes to 
petabytes, due to the large amount of resources available on the 
Internet); 2) Variety: the main data source is either unstructured or 
semi-structured; 3) Velocity: the models that are trained and tested 
require high-performance computing, with bounded processing times; 
4) Value: the ability to extract information and knowledge from the raw 
data; and 5) Veracity: the ability to perform quality processes (filtering 
and Data Prep).

In general, big data technologies are used as storage (i.e., configured 
as a data lake and as SQL/NoSQL databases) and as Apache Spark 
clusters that allow the processing of large volumes of unstructured and 
semi-structured data.

In this project, we used the following five-stage reference 
architecture:

• Stage 1. Data sources: These include the same sources identified 
in SmartCon’s detailed architecture, mainly based on unstructured 
and semi-structured data such as text documents, audio or video.

• Stage 2. Ingest: Software robots that collect data from the sources 
on the Internet.

• Stage 3. Data storage and preparation: The main storage is 
performed in a data lake, which is designed with four zones: raw, 
stage, trusted, and refined. More specifically, the data is first stored 
in the raw zone or in the stage zone if the data requires some pre-
processing such as data decompression or file format transformation. 
Then, a series of extraction, transformation, and loading (ETL) 
processes are performed, which allow the data to be normalized 
for later stages of data analysis and the search engine.



38

• Stage 4. Data analysis: This is considered the main component 
of the project, since it is the stage of information and knowledge 
generation toward the intelligent recommendation module. 
From the perspective of big data, it is the component that allows 
the execution of ML models over a Spark cluster. The data and 
output models are stored back in the data lake (i.e., the refined 
zone) or in NoSQL databases, for later use in the RecSys. This 
stage primarily runs in a supercomputer environment, with big 
data clusters based on Apache Spark and Hadoop. In addition, 
it is mainly deployed in the Academic Data Center at EAFIT 
University and (to a lesser extent) in the AWS cloud.

• Stage 5. Application: This stage implements the search and 
retrieval engine modules (based on Apache Solr), and uses the 
RecSys module for both content and collaborative filtering. It also 
implements a module for managing preferences, logs, favorites, 
etc. Finally, it adapts an open-source LMS, such as Moodle, to 
utilize all plug-ins and adapters. These applications were deployed 
in the test and the production environment of the pilot test. 
Moreover, the main deployment was in the AWS cloud, while the 
testing was conducted at the EAFIT Academic Data Center.

Figure 11 presents SmartCon’s big data reference architecture, 
including the different technologies used and the execution environment:

Figure 11. SmartCon Big Data Architecture

Crawler
Internet Open

Resources (IOR)

Datalake

DB noSQL

Internet

AWS EC2 & Docker AWS EC2 & DockerSpark ClusterAWS S3, EFS, MongoDBCloud & On-premise

stage 1
data sources

stage 2
Ingest

stage 3
Storage and Dataprep

stage 4
Data Analytics / ML

stage 5
Applications

python & pyspark AWS S3, File System &
MongoDB

python, pysparks, 
ML libs

Apache Solr,
python-Flask,

MongoDB
Moodle-MariaDB

Search Engine

Recsys

LMS

Supervised and
Unsupervised Models

Text Mining

Source: Prepared by the authors



39

Development and Deployment of SmartCon
SmartCon was implemented through several software components 
developed within the project. It also used different open-source 
projects to implement certain components, and employed the research 
infrastructure at EAFIT University as well as cloud services for project 
deployment. At the software level, the following modules were developed:

• Crawler: A software module developed in Python and PySpark 
that runs on a data server and collects all of the data sources on 
the Internet. The collected data is then stored in a data lake (i.e., 
the raw zone).

• Data Prep: A software module that runs on a data server and 
transforms the original data from the Internet into a standardized 
form in order to facilitate the mining processes and conduct 
normalization for the indexing module.

• Indexer: A software module that runs on a data server and indexes 
all of the standardized contents in the search and retrieval engine.

• ML Models: A software module that implements all of the data 
mining models. It is also a software component that primarily 
utilizes the big data and data processing infrastructure. It also runs 
on a Spark cluster, since some models can take hours or even days 
to run. More specifically, these models mainly run in an on-premise 
cluster in the Academic Data Center at EAFIT. In this case, the 
cluster is built using three servers that total 512 GB RAM, 4 TB 
of SSD storage, 72 cores, and two Nvidia K80 GPUs.

• RecSys: A software module that implements the main core of 
SmartCon. It integrates the results of the ML models and search 
engine and exposes a series of web services toward the LMS.

Overall, SmartCon uses the following open-source software:
• Apache Solr 1 Version 8.6.2 to implement the search engine.
• NoSQL MongoDB 2 database Version 4.0, in which the RecSys stores 

the data, logs, student and course profiles, favorites, caches, etc.
• MariaDB3 SQL database Version 10.3, used by Moodle.

1  https://lucene.apache.org/solr/ 
2  https://www.mongodb.com/ 
3  https://mariadb.org/ 



40

• LMS Moodle 4 3.9.2, in which the courses, users (i.e., the students 
and teachers), contents, etc. are managed. It also creates users for 
students and teachers, stores course contents, etc.

The deployment and information technology (IT) infrastructure for 
SmartCon is shown in Figure 12.

Figure 12. Deployment and IT Infrastructure

Crawler
Apache Soir

MongoDB
S3 / NFS

MariaDB

Moodle
Moodle
Plugins

Data & Text
Mining

RecSys

Indexer

DataPrep
(ETL)

Internet Open
Resources (IOR)

DB NoSQL
DB SQL

Datalake

Data Server LMS Server

Spark Cluster

RecSys ServerSearch Engine

Source: Prepared by the authors

AWS Cloud Services: At the cloud level, services are primarily used 
online and in production for the following:

• AWS EC2 virtual machines, which run both native or docker 
versions of different SmartCon modules. They also run data 
server, search engine, RecSys, LMS server, DB SQL server, and 
DB NoSQL server.

4  https://moodle.org/ 



41

• Object storage in AWS S3 to deploy the data lake.
• Load balancers with AWS ELB.
• Name service in AWS Route 53 to manage the domain: 

contenidosint.org
On-premises servers and Spark cluster: Academic Data Center IT 

infrastructure, in which the online testing version of SmartCon runs and 
where they run the following ML models:

• Virtual machines for the testing environment.
• Virtual machines for the software development environment.
• Apache Spark cluster for training and testing of the ML models.

This component also runs in batches.

Testing SmartCon

SmartCon has been tested in various courses in the undergraduate 
computer science program at EAFIT University, including Computational 
Thinking, Programming Fundamentals, and Special Topics in Telematics.

Each of these courses used the following modules, which were 
activated in Moodle:

• Recommendation module: The block in which SmartCon 
recommendations are received.

• Favorite module: The contents that are selected by the teacher, 
either from SmartCon or external websites. They are also contents 
from SmartCon that, due to their popularity, are promoted to this 
category.

• Search module: SmartCon provides teachers and students with 
a search interface, which can be accessed from Moodle as well as 
from an external application.

• Profile module: Allows students and teachers to select categories, 
sources, and language preferences. The objective is to personalize 
the recommendations generated by SmartCon.

• Scoring module: This module allows the scoring of the contents, 
both implicitly and explicitly. More specifically, implicitly, it is 
through a wrapper that intercepts all of the intentions of opening 
the recommended content, whereas explicitly, it is through 
ratings such as likes/dislikes or promotions to favorites. All of this 
data allows SmartCon to “learn” from the interactions with the 
recommended contents, and to improve its learning algorithms.



42

• Log module: Allows extracting logs from the Moodle platform 
to improve the recommendation algorithms, especially the 
collaborative filtering and hybrid algorithms.

In the GUI Moodle, the following modules are shown. First, the 
RecSys module is shown in Figure 13.

Figure 13. The RecSys Module

Source: Prepared by the authors

Second, the Search module is shown in Figure 14.

Figure 14. The Search Module

Source: Prepared by the authors



43

Third, the Profile module is shown in Figure 15.

Figure 15. The Profile Module

Source: Prepared by the authors

Finally, the Favorites module is shown in Figure 16.

Figure 16. The Favorites Module

Source: Prepared by the authors



44

Proposed Testing Methodology
For the recommendation system, the following testing methodology 
applied in the three aforementioned courses. The methodology consisted 
of the following three phases:

• Surveys: In this phase, three initial surveys were administered to 
the students. The first was a socio-demographic survey, the second 
examined learning styles, and the third focused on personalities. 
As a result of this phase, the data obtained in the Profile module 
for each student was used to recommend a list of contents for 
each topic.

• Content rating: After recommending such contents, the students 
rated the list from 1 to 5, according to the level of importance. In 
this phase, the students mentioned the relevance of the contents, 
according to the related topic.

• Evaluation: Finally, the relevance and precision of the recommended 
contents were evaluated in order to verify the effectiveness of the 
recommendation system.

Adapting the ARS Toward a Service-Oriented Architecture (SOA)

The implementation of a SOA architecture will guarantee that 
the ARS easily adapts to any educational institution’s IT. For the 
implementation of our ARS for VLEs, a SOA methodology, based on 
Suhardi, Doss, & Yustianto (2015), was proposed, which describes 
four general phases that guide the construction and management of 
a service-oriented architecture. The first phase describes the general 
identification of academic, administrative, business, innovation, 
technological requirements, etc., while the second phase designs the 
process, architecture, system, data, and services that can be a part of the 
architecture. In the third phase, the development and test of each of 
the previously designed services are carried out, while in the final phase, 
the architecture is deployed through monitoring, versioning, and the 
discovery of new services (see Figure 17). Each of these phases can be 
articulated with SOA governance, in which the processes and activities 
must be aligned with institutional IT policies.



45

Figure 17. General Methodology for Adapting the ARS Ioward an SOA

Monitoring

System, architecture, processes, data
Requirements: academic,

administrative, business, innovation,
technological

PolicyTestsPrototyped

Governance

Development

DesignIdenti�cation

Deployment

Source: Prepared by the authors

Conclusion

This chapter presented the main contributions of the SmartCon project. 
The main goal was to integrate different free sources and digital contents 
from the Internet in order to build an ARS that recommends contents 
to different users in an educational context, based on big data analytics, 
autonomic computing, and artificial intelligence paradigms.

Overall, the SmartCon project included five major components: 1) a 
data lake to store open digital resources; 2) processing tasks to prepare the 
sources of information; 3) data analytics tasks to enrich the knowledge of 
the contents, courses, students, and teachers; 4) a search engine system; 
and 5) a recommendation system to personalize the contents to different 
users (e.g., students and teachers). In addition, the project developed a 
prototype called SmartLMS, which is an open-source LMS that uses our 
recommendation system.

Particularly, the project defined the concept of an ARS (with 
intelligent and autonomic capabilities) and its extensions to consider 
hybrid recommendation algorithms and emotion recognition. These 
aspects are important characteristics that can be easily added to an ARS 
(according to its MAPE-K model), thus supporting the robustness of the 
system recommendation process.

Meanwhile, the hybrid recommendation process was adapted to 
the data at the moment of execution, after which the hybridization was 
dynamically configured for each user, depending on the advantages/



46

disadvantages of the various recommendation approaches. In this case, the 
recommendation approaches were determined in real time (see Salazar 
et al. (2020, n.d), Salazar, Montoya & Aguilar (n.d.) and Valera et al. (n.d, 
-a,b) for more details). More specifically, the proposed fuzzy system for 
managing the integration of the recommendation approaches (using the 
defined metrics) included the ability to solve existing problems, such as 
cold start, in the individual recommendation algorithms.

Moreover, the SmartCon project developed different mining tasks for 
the various tasks required by the ARS. For example, it proposed different 
content extraction approaches and featured an engineering process for 
audio datasets. It also analyzed different recognition approaches and meta-
features that could be used to guide the hybrid recommendation process.

Finally, the project developed a prototype in which it clearly 
defined the platform required by our ARS. Particularly, the prototype 
was composed of a data lake, a ML module, a search engine system, a 
recommendation system, and a LMS.

As for future recommendations, research must exploit the different 
sources of knowledge incorporated by our proposal in a smart classroom 
in order to improve the learning process. In this regard, various concepts, 
such as autonomous learning analytics cycles (Aguilar, Cordero, & 
Buendía, 2018) that allow the natural integration of context information 
in a dynamic process of continuous improvement, should be used. 
Furthermore, future works should analyze the results of the learning 
process using appropriate metrics that can measure the overall impact 
of our recommendation system on students.

Acknowledgments

This work was supported by Project No. 64366 “Contenidos de 
aprendizaje inteligentes a través del uso de herramientas de Big Data, 
Analítica Avanzada e IA” –The Ministry of Science –The Government of 
Antioquia –The Republic of Colombia.



47

References

Adomavicius, G., & Tuzhilin, A. (2005, June). Toward the next generation 
of recommender systems: a survey of the state-of-the-art and possible 
extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749.  
https://doi.org/10.1109/tkde.2005.99. 

Aguilar, J., Cordero, J., & Buendía, O. (2018). Specification of the autonomic 
cycles of learning analytic tasks for a smart classroom. Journal of Educational 
Computing Research, 56(6), 866-891.

Aguilar, J., Salazar, C., Velasco, H., Monsalve-Pulido, J., & Montoya, E. (2020). 
Comparison and evaluation of different methods for the feature extraction 
from educational contents. Computation, 8(2), 30.

Aguilar, J., Valdiviezo-Díaz, P., & Riofrio, G. (2017). A general framework for 
intelligent recommender systems. Applied Computing and Informatics, 13(2), 
147-160. https://doi.org/10.1016/j.aci.2016.08.002.

Balabanovic, M., & Shoham, Y. (1997, March). Fab: content-based, 
collaborative recommendation. Communications of the ACM, 40(3), 66–72. 
https://doi.org/10.1145/245108.245124.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. 
User Modeling and User-Adapted Interaction, 12(4), 331-370.

Burke, R. (2007). Hybrid web recommender systems. In P. Brusilovsky, A. 
Kobsa & W. Nejdl (Eds.), The Adaptive Web (pp. 377-408). Springer.

Cacheda, F., Carneiro, V., Fernández, D., & Formoso, V. (2011, February). 
Comparison of collaborative filtering algorithms. ACM Transactions on the Web, 
5(1), 1-33. https://doi.org/10.1145/1921591.1921593.

Cambria, E., Fu, J., Bisio, F., & Poria, S. (2015, January). Affectivespace 2: 
Enabling affective intuition for concept-level sentiment analysis [Conference 
paper]. In Proceedings of the Twenty AAAI Conference on Artificial Intelligence, New 
York (pp. 508-514). AAAI Press.

Cambria, E., Poria, S., Hazarika, D., & Kwok, K. (2018, February). Senticnet 5: 
Discovering conceptual primitives for sentiment analysis by means of context 
embeddings [Conference paper]. In Proceedings of the Thirty Second AAAI 
Conference on Artificial Intelligence, New Orleans (pp. 1795-1802). AAAI Press.



48

Chauhan, G. S., Agrawal, P., & Meena, Y. K. (2019, April). Aspect-based 
sentiment analysis of students’ feedback to improve teaching-learning process 
[Conference paper]. In Proceedings of Information and communication technology 
for intelligent systems, Ahmedabad (pp. 259-266). Springer.
https://doi.org/10.1007/978-981-13-1747-7_25.

Chirita, P.-A., Nejdl, W., & Zamfir, C. (2005, November). Preventing shilling 
attacks in online recommender systems [Conference Paper]. In Proceedings 
of the seventh ACM international workshop on web information and data management 
WIDM ‘05, Bremen (pp. 65-74). ACM Press. 
https://doi.org/10.1145/1097047.1097061.

Faria, A. R., Almeida, A., Martins, C., Gonçalves, R., Martins, J., & Branco, 
F. (2017). A global perspective on an emotional learning model proposal. 
Telematics and Informatics, 34(6), 824-837.

Golovin, N., & Rahm, E. (2004, April). Reinforcement learning architecture 
for web recommendations [Conference Paper]. In Proceedings of the International 
Conference on Information Technology: Coding and Computing, 2004. Proceedings, Las 
Vegas (pp. 398-402). IEEE. https://doi.org/10.1109/ITCC.2004.1286487. 

Hill, W., Stead, L., Rosenstein, M., & Furnas, G. (1995, May). Recommending 
and evaluating choices in a virtual community of use [Conference Paper]. In 
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems CHI ‘95, 
Denver (pp. 194-201). ACM Press. https://doi.org/10.1145/223904.223929.

Huang, Z., Chen, H., & Zeng, D. (2004, January). Applying associative 
retrieval techniques to alleviate the sparsity problem in collaborative 
filtering. ACM Transactions on Information Systems (TOIS), 22(1), 116–142.  
https://doi.org/10.1145/963770.963775.

Immordino-Yang, M. H., & Damasio, A. (2007). We feel, therefore we learn: 
The relevance of affective and social neuroscience to education. Mind, Brain, 
and Education, 1(1), 3-10.

Jimenez M., Aguilar J., Monsalve-Pulido J. & Montoya, E. (2020). An 
automatic approach of audio feature engineering for the extraction, analysis 
and selection of descriptors (Accepted for publication, International Journal 
of Multimedia Information Retrieval).



49

Knob, L. A. D., Esteves, R. P., Granville, L. Z., & Tarouco, L. M. R. (2017, July). 
Mitigating elephant flows in sdn-based ixp networks [Conference Paper]. In 
Proceedings of the 2017 IEEE Symposium on Computers and Communications (ISCC), 
Heraklion (pp. 1352-1359). IEEE. 
https://doi.org/10.1109/ISCC.2017.8024712. 

Kruse, K. (2002). Introduction to instructional design and the addie model. Retrieved 
January, 26, 2005.

Lam, S. K., & Riedl, J. (2004, May). Shilling recommender systems for fun 
and profit [Conference Paper]. In Proceedings of the 13th international conference 
on World Wide Web, New York (pp. 393-402). ACM Press. 
https://doi.org/10.1145/988672.988726.

Monsalve-Pulido, J., Aguilar, J., Montoya, E., & Salazar, C. (2020). Autonomous 
recommender system architecture for virtual learning environments. Applied 
Computing and Informatics.

NCES. (2014). Common Education Data Standards (Vol. 66). Retrieved 
from http://ceds.ed.gov.

Obeid, C., Lahoud, I., El Khoury, H., & Champin, P.-A. (2018, April). Ontology-
based recommender system in higher education [Conference Paper]. In 
Proceedings of the The Web Conference, Lyon (pp. 1031-1034). ACM Press.  
https://doi.org/10.1109/IEEESTD.2002.94128.

Pekrun, R. (1992). The impact of emotions on learning and achievement: 
Towards a theory of cognitive/motivational mediators. Applied Psychology, 
41(4), 359-376.

Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic emotions in 
students’ self-regulated learning and achievement: A program of qualitative 
and quantitative research. Educational psychologist, 37(2), 91-105.

Salazar, C. Montoya, E. & Aguilar, J. (n.d.). Analysis of different affective state 
multimodal recognition approaches with missing data oriented to virtual learning 
environments (submitted to publication).

Salazar C, Aguilar J., Monsalve-Pulido J., & Montoya, E. (2020). Análisis de 
sentimientos/polaridad en diferentes tipos de documentos. Revista Ibérica de 
Sistemas y Tecnologías de la Información, E38, 171-184.



50

Salazar C., Aguilar J., Monsalve-Pulido J., & Montoya, E. (n.d). A generic 
architecture of an affective recommender system for e-learning environments (submitted 
to publication).

Sarwar, B., Karypis, G., Konstan, J., & Reidl, J. (2001, April). Item-based 
collaborative filtering recommendation algorithms [Conference Paper]. In 
Proceedings of the 10th international conference on World Wide Web, Hong Kong (pp. 
285-295). ACM Press. https://doi.org/10.1145/371920.372071.

Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002, August). 
Methods and metrics for cold-start recommendations [Conference Paper]. 
In Proceedings of the 25th annual international ACM SIGIR conference on Research 
and development in information retrieval, Tampere (pp. 253-260). ACM Press. 
https://doi.org/10.1145/564376.564421.

Schuller, B., Steidl, S., Batliner, A., Vinciarelli, A., Scherer, K., Ringeval, F… 
others (2013, August). The interspeech 2013 computational paralinguistics 
challenge: Social signals, conflict, emotion, autism [Conference Paper]. In 
Proceedings of the INTERSPEECH 2013, 14th Annual Conference of the International 
Speech Communication Association, Lyon (pp. 148-152). ISCA Archive.

Shardanand, U., & Maes, P. (1995, May). Social information filtering 
[Conference Paper]. In Proceedings of the SIGCHI Conference on Human Factors 
in Computing Systems, Denver (pp. 210-217). ACM Press. 
https://doi.org/10.1145/223904.223931. 

Shen, L., Wang, M., & Shen, R. (2009). Affective e-learning: Using 
“emotional” data to improve learning in pervasive learning environment. 
Journal of Educational Technology & Society, 12(2), 176-189.

Suhardi, S., Doss, R., & Yustianto, P. (2015). Service engineering based 
on service-oriented architecture methodology. Telecommunication Computing 
Electronics and Control, 13(4), 1466-1477.

Tarus, J. K., Niu, Z., & Mustafa, G. (2018). Knowledge-based recommendation: 
a review of ontology-based recommender systems for e-learning. Artificial 
intelligence review, 50(1), 21-48.

Varela D., Aguilar J, Monsalve-Pulido J., & Montoya, E. (n.d.-a). Analysis of 
meta-features in the context of adaptive hybrid recommendation systems (submitted 
to publication).



51

Varela D., Aguilar J., Monsalve-Pulido J. & Montoya, E. (n.d.-b). Propuesta 
arquitectónica de un sistema de recomendación híbrido adaptativo (Accepted 
for publication, Revista Ibérica de Sistemas y Tecnologías de la Información).

Vijayakumar, V., Vairavasundaram, S., Logesh, R., & Sivapathi, A. (2019). 
Effective knowledge based recommender system for tailored multiple point 
of interest recommendation. International Journal of Web Portals, 11(1), 1-18.

Vizcarrondo, J., Aguilar, J., Exposito, E., & Subias, A. (2017). Mape-k as a service-
oriented architecture. IEEE Latin America Transactions, 15(6), 1163-1175.

Vladoiu, M., Constantinescu, Z., & Moise, G. (2013, September). QORECT 
–a case-based framework for quality-based recommending open courseware 
and open educational resources [Conference Paper]. In Proceedings of the 5th 
International Conference on Computational Collective Intelligence, ICCCI, Craiova 
(pp. 681-690). Springer.

Yu, L. C., Lee, C. W., Pan, H. I., Chou, C. Y., Chao, P. Y., Chen, Z. H., ... 
& Lai, K. R. (2018). Improving early prediction of academic failure using 
sentiment analysis on self-evaluated comments. Journal of Computer Assisted 
Learning, 34(4), 358-365.

Zhu, F., Ip, H. H. S., Fok, A. W. P., & Cao, J. (2008). PeRES: A personalized 
recommendation education system based on multi-agents and SCORM.  In 
H. Leung, F. Li, R. Lau, Q. Li (Eds.), Advances in Web Based Learning – ICWL 
2007. ICWL 2007. Lecture Notes in Computer Science (vol 4823, pp. 31-42). 
Springer. https://doi.org/10.1007/978-3-540-78139-4_4


