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Nomenclatura

(A'7 B’ C7 D)

(A,B,C,D)

Afl
AT

argmin{ (@)

(k—n)= Ok

Az, = x; — x;
Au =u —uy

Matrices del modelo continuo lineal en variables
de estado.
Dimensiones: (n x n), (n x m), (p X n), (p x m)

Polinomios de un modelo ARX, ARMAX, OE o
Box-Jenkins

Inversa de la matriz A

Transpuesta de la matriz A
Valor de  que minimiza la funcién f(x)

Factor de cresta de una senal

Autocovarianza de la variable u(t):

Cy (1) = Efu(t) — p,Jfu(t — 1) — p, ]
Coincide con la autocorrelacion si la media es igual
a cero

Covarianza cruzada de las variables u(t) y v(t):

Cuv<T) = E[u(t> - /J’u] [V(t - T) - :U’v]T
Coincide con la correlacion si las medias son
iguales a cero

Numero de condicion de la matriz A

Retardo puro discreto de un sistema dindmico a
partir del retardo continuo T del modelo continuo

Funcién delta de Dirac de tiempo continuo
(definida en cada instante del tiempo en un
intervalo determinado)

Funcién delta de Kronecker (4;,,) o funcién
impulso unitario de tiempo discreto

Variables incrementales con respecto al punto de
equilibrio (x¢, u,)



Y

eAt =T+ At +-—+ -

L dy () _dy
dt’y

Cdtn

(At)?
2l

Derivadas ordinarias de orden 1 y orden n con
respecto al tiempo

Ruido blanco dado por una secuencia de variables
aleatorias independientes.

Variable de error igual a la diferencia entre la
variable de referencia y la variable de salida
(variable controlada) de un sistema dindmico con
realimentacion: e(t) = r(t) — y(t)

Error en estado estacionario o valor final de la
variable de error

Error de prediccién o innovacion:

e(t) =y(t) —y(t)
Esperanza matemadtica de la variable aleatoria v(t)

Matriz exponencial (es solo una representacion y
debe interpretarse como una serie infinita de
potencias)

Funcién de tiempo continuo (definida en cada
instante del tiempo en un intervalo determinado)

Funcién de tiempo discreto (se puede omitir el
periodo de muestreo 7', y asumir que estd
implicito)

Frecuencia de muestreo (Hz)
Funcién de densidad de probabilidad de la variable
aleatoria X (PDF — “Probability Density Function”)

Funcién de distribuciéon (acumulada) de
probabilidad de la variable aleatoria X

Transformada de Fourier

Vector de regresion en la estimacién con minimos
cuadrados

Matriz de transicién del estado, equivalente a la
matriz exponencial

vi



K

Kk
L{f(t)} = F(s)
A=a+if

Matrices del modelo lineal discreto en variables de
estado.
Dimensiones: (n X n), (n X m), (p X n),(p x m)

Espectro de potencia o densidad espectral de
potencia de la funcién u(k)

Funciéon de transferencia en la variable s o z
(continua o discreta)

Martriz de funciones de transferencia en la variable
s 0 z (continua o discreta)

Funcién de transferencia en lazo cerrado
Nimero imaginario

Matriz identidad

Parte imaginaria del nimero complejo A

Variable de tiempo discreto (K7, k =0,1,2,...),
donde el periodo de muestreo 7 estd implicito. En
ocasiones se toma ¢t = kT

Ganancia constante

Constante de accién proporcional de un
controlador PID

Matriz de ganancias en un control estatico de
realimentacion del estado

Ganancia o matriz de Kalman

Transformada de Laplace

Raiz caracteristica o valor propio

Numero de entradas de un sistema dindmico
Matriz de controlabilidad

Margen de fase de un sistema dindmico
Margen de ganancia de un sistema dindmico

Matriz de observabilidad

vii



Hoy

na

nb

nc

nd

nk

Sobreimpulso maximo de la respuesta temporal con
oscilaciones de un sistema dindmico

Pico de resonancia de la respuesta frecuencial de
un sistema dindmico lineal

Esperanza matematica, valor esperado o media de
la variable v(k)

Orden de un sistema dindmico (ndmero de
variables de estado)

Namero de pardmetros del denominador A(g 1)
de la funcién de transferencia discreta del modelo
del proceso

Nuamero de pardmetros del numerador B(g 1) de
la funcién de transferencia discreta del modelo del
proceso

Namero de pardmetros del numerador C'(¢7!) de
la funcién de transferencia discreta del modelo de
la perturbacion

Nuamero de pardmetros del denominador D(g 1)
de la funcién de transferencia discreta del modelo
de la perturbacién:

Retardo total discreto (orden relativo) de la
funcién de transferencia: nk =d +n, > 1

Nuamero total de parimetros de una estructura de
un modelo matemadtico

Orden relativo de un sistema dindmico (diferencia
entre el nimero de polos y ceros finitos)

Nimero de datos en un experimento de
estimacién de parimetros

Numero de salidas de un sistema dindmico
Periodo de una sefal periédica

: : P — T
Matriz de covarianzas: P = E(v — p, ) (v — )

Vector propio correspondiente al valor propio A;:
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Orden de excitacion persistente de una senal
Operadores de desplazamiento hacia delante y
hacia atris

Sefial de referencia (sezpoint) o senal deseada en un
sistema en lazo cerrado. K =0,1,2,..., N —1

Autocorrelacion de la variable u(t): R, (1) =
Eu(t)u(t — )

Correlacion cruzada de las variables u(t) y v(t):
R, (T) = Bu(t)v(t — 1), donde R, (7) =
Ruv(_T)

Parte real del namero complejo A
Coeficiente de determinacién de la variable y

Rango de la matriz A
Variable compleja de la transformada de Laplace

Varianza de la variable u(k):
Cy(0) = Elu(t) — p][ult) — p, "
Desviacion estiandar de la variable v(k)

Tiempo continuo o tiempo discreto (en ocasiones
se usa t en lugar de k)

Periodo de muestreo (se omite el subindice cuando
no hay opciones de confusién con la constante de
tiempo)

Constante de tiempo para un sistema equivalente
de primer orden

Matriz de transformacién lineal o de similitud

Constante de tiempo derivativo de un controlador
PID

Constante de tiempo integral de un controlador
PID

Tiempo de pico de la respuesta temporal



ut—m={] °

u(t), u(k)
v(t), v(k)
V(x)
Vn(0),V(0)
w(t), w(k)
Wo

Wp

Wey

Weg

wy =w,/2

Tiempo de crecimiento de la respuesta temporal

Tiempo de establecimiento de la respuesta
temporal

Traza de la matriz A

Retardo continuo de un sistema dindmico, el cual
se introduce en la senal de entrada: u(t — )

Vector de pardmetros estimados y exactos de un
modelo matematico

Funcién escalon unitario o de Heaviside

Vector de entradas de tiempo continuo o discreto
de dimension (m x 1)

Vector de perturbaciones o ruidos de la medida de
dimensioén (p x 1)

Funcién de Lyapunov

Funcién de coste (se omite el subindice cuando no
hay opciones de confusién con otra funcién)

Varianza de la variable aleatoria v

Vector de ruidos de las variables de estado del
sistema (perturbaciones no medibles, dindmicas no
modeladas) de dimensién (n x 1)

Frecuencia angular de un movimiento periédico

(rad/s)

Frecuencia angular no amortiguada de un
movimiento periédico (rad/s)

Ancho de banda (rad/s) de la respuesta frecuencial
de un sistema dindmico lineal

Frecuencia de cruce de fase (rad/s)
Frecuencia de cruce de ganancia (rad/s)

Frecuencia de Nyquist (rad/s)
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Frecuencia de resonancia (rad/s) de la respuesta
frecuencial de un sistema dindmico lineal

Frecuencia de muestreo (rad/s)

Conjunto de variables de estado

Variables escaladas (divididas por el maximo valor
esperado de dicha variable)

Vector de estados de tiempo continuo o discreto de
dimension (n x 1)

Condici6n inicial del sistema dindmico de tiempo
continuo o discreto

Vector de estados estimados de dimension (n x 1)

Variables de estado en un punto de equilibrio del
sistema dindmico de tiempo continuo o discreto

Vector de salidas o respuestas temporales de un
sistema dindmico de dimensién (p x 1)

Vector (p x 1) de salidas o respuestas temporales
estimadas de un sistema dindmico en el instante
discreto ko ¢t

Diferencias finitas hacia delante de orden 1y
orden n

Diferencias finitas hacia atrds de orden 1y nn
Variable muestreada

Respuesta temporal en estado estacionaria o valor
final de la salida y(t)

Variable compleja de la transformada z
T'ransformada z
T'ransformada z modificada

Razo6n de amortiguamiento de un sistema dindmico
lineal de segundo orden.

Xi



* Simbolo de convolucién: f(t) * g(t)

|z| = v/Re2(2) + Im2(z) Magnitud del ndmero complejo z = a + i3

A Norma de la matriz A
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Prefacio

El objetivo general del libro es identificar, enlazar y aplicar los principales
conceptos, métodos matematicos y herramientas de los sistemas dindmicos,
la teoria de la estimacién y los sistemas de control, por medio de la
determinacién matematica de las caracteristicas bdsicas en problemas simples
que permitan el desarrollo intuitivo de los temas, la determinacién de las
caracteristicas complejas con ayuda de herramientas computacionales
(MATLAB® y Simulink®) que integren los diversos métodos, y la aplicacién
a problemas de diversas areas del conocimiento (sistemas en contexto).

El 4drea de los sistemas dindmicos ha penetrado practicamente en todas las
areas de la ciencia y la tecnologia, dado que permite abordar y manejar
sistemdticamente aspectos de andlisis, disefio, optimizacion y control. El drea
es transversal, por aplicarse a diferentes tipos de sistemas, y genérica, en
cuanto a que utiliza métodos, técnicas y tecnologias de varias dreas de
conocimiento bajo un enfoque sistémico basado en el modelo matematico. Un
sistema se define como un conjunto de elementos unidos y en interaccion (no
necesariamente con un objetivo definido), y puede aplicarse a fenémenos
materiales o abstractos (fisicos, quimicos, biol6gicos, ecoldgicos, econdémicos,
sociales, matematicos, entre otros). T'odos los sistemas estin compuestos por
elementos, tienen una estructura, tienen sinergia € interactdan con su
entorno.

El enfoque de sistemas es un estudio interdisciplinario que proporciona
una visién general para la solucion integrada y holistica de problemas de
diversa naturaleza, con un énfasis en los patrones de cambio e interacciones,
y la integracion y transferencia de conocimientos, conceptos y principios de
diversas areas, reduciendo la duplicacion del esfuerzo tedrico. Un principio es
una proposicion o verdad fundamental aceptada a partir de la cual se inicia el
estudio de las ciencias o las artes; son leyes de la naturaleza que no se pueden
demostrar explicitamente, pero que se pueden medir y cuantificar observando
los resultados que producen. La teoria de los sistemas dindmicos se integra en
la cibernética, es decir, en la ciencia dedicada al estudio de los métodos de
comunicacién (transmisién y recepcion de informacion mediante un codigo
comun entre el emisor y el receptor), control y autoorganizaciéon comunes a
maquinas y organismos vivos. La informacién, por su parte, es un conjunto de
datos organizados y correlacionados que se generan, almacenan, analizan,
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interpretan o transmiten para formar un mensaje que reduce la incertidumbre
y cambia el estado de conocimiento del receptor; un dato aislado no es
informaci6n, como tampoco lo son datos no relacionados; para que aparezca la
informaci6n debe haber un enlace entre los fragmentos de los datos.

En el estudio de los sistemas dindmicos, es importante tener en cuenta
que, aunque la mayoria de los sistemas dindmicos incluyen sefales
estocdsticas (comportamiento aleatorio o al azar), una practica comun y
exitosa consiste en considerar que los sistemas dindmicos son deterministicos
(comportamiento que no depende del azar) y tratar las sefales desconocidas
e 1mpredecibles como perturbaciones, analizando el i1mpacto de las
perturbaciones por medio de la simulacién. En este contexto, un proceso es
una operacion o desarrollo natural progresivamente continuo, marcado por una
serie de cambios graduales que se suceden uno al otro en una forma
relativamente fija y conducen a un resultado o propésito determinados; es el
sistema sobre el cual se concentra un estudio. Una sefal es la representacion
fisica de una variable; a una sefial le corresponde una variable y viceversa, por
lo que en la mayoria de los casos pueden considerarse equivalentes y solo se
diferencian por el contexto (senal en diagramas de flujo y variable en
expresiones matematicas).

Una perturbacién es una variable externa deterministica o aleatoria,
medible o no medible, no deseada y no manipulable, aplicada a un sistema y
que afecta adversamente su comportamiento. A diferencia de una
perturbacion (aplicada en el canal de entrada), un ruido afecta una medicién
de una variable (canal de salida), mas no al sistema mismo. La relacién
sefal/ruido es la relaciéon que hay entre la potencia de la sefal que se transmite
y la potencia del ruido indeseado (también se puede dar como una relacién
ruido/senal); una relacién ruido/senal pequenia minimiza el impacto negativo
del ruido.

De otro lado, la mayoria de los sistemas dindmicos son no lineales, es decir,
no cumplen con el principio de superposiciéon (secciéon 3.3.1) y no cuentan
con métodos y herramientas de simple aplicacion, por lo que el enfoque de
aproximacion lineal es ampliamente utilizado en ingenieria al generar modelos
simples sobre los cuales se aplican métodos matematicos muy bien definidos
y exactos. LLa obtencién de modelos matematicos lineales en cierto intervalo
de operacion se realiza por medio de una operacién llamada linealizacion
(seccion 3.4). En este libro se parte de una vision no lineal, pero se aplican
métodos lineales en el andlisis y disefio que luego se verifican en simulacion
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sobre el modelo no lineal. Esta es una caracteristica que no es comin en los
textos de sistemas dindmicos y sistemas de control.

En relacion con el libro, entre sus caracteristicas metodoldgicas estan:

e Enfasis en una visién sistémica de los temas y problemas, lo cual
facilita la integraciéon de los métodos con aplicaciones concretas. Es
decir, se presentan los temas haciendo énfasis en los aspectos
genéricos de un sistema especifico en vez de sus particularidades.

e Enfoque desde los sistemas no lineales, llegando finalmente a
soluciones lineales importantes para todo ingeniero, pero volviendo al
contexto no lineal de donde provienen, es decir, el andlisis y disefio
lineales se prueban sobre el sistema no lineal, generalmente en
simulaciéon. El enfoque no lineal es fundamental en la mayoria de los
casos de estudio del capitulo 7.

e Soluciéon y verificacion [1] de problemas con MATLAB (para la
implementacién de los algoritmos) y Simulink (para la simulacién),
con los respectivos archivos disponibles en el sitio web del libro [2]. El
uso de MATLAB obedece a que el codigo es casi un pseudocodigo
(lenguaje sencillo, informal y cercano al lenguaje coloquial que no
puede ejecutarse en un computador, pero si en el papel) y permite
concentrarse en los aspectos de la implementaciéon mds que en los
detalles del lenguaje y su compilacion. Ademds, existe software
alternativo y gratuito de MATLAB que se puede usar en muchos casos
(Octave, Scilab). El uso de Simulink se justifica por la simplicidad para
obtener diagramas bien documentados y con la posibilidad de separar
el método numérico de la idea misma del modelo; de hecho, Simulink
puede utilizarse como una herramienta visual de programacion y a
partir de sus diagramas se puede generar cddigo en C y otros lenguajes,
permitiendo incluso su uso en esquemas de control en tiempo real de
procesos reales, donde el diagrama de Simulink se convierte en la
interfaz grafica de usuario. En este libro se utiliza la version 2022b de
MATLAB, por lo que el lector debe revisar los cambios
correspondientes a las nuevas versiones y estar atento a las novedades
en el blog del libro. El cédigo presentado es simple y sin mucha
documentacién, para que el lector lo tome como punto de partida para
la comprension de la teoria. De este modo, el lector debe documentar
cada programa.
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e Enfasis en los conceptos y métodos de dreas afines (investigacion,
ciencia, pensamiento sistémico, matemadticas, educacién), los cuales
se introducen brevemente en el libro y se profundizan en la web del
libro [2]. El lector debe revisar el indice al final del libro para
identificar en que pagina se define un concepto.

e Enfoque basado en competencias de aprendizaje en la introduccién de
los temas y en la propuesta de ejercicios con diferentes niveles de
desempeno, con el desarrollo de diferentes tipos de pensamiento
matemadtico (numérico, espacial, métrico, aleatorio y variacional) y de
procesos generales de la matemdtica (solucion de problemas,
procedimientos matematicos, modelacion y simulacidon, comunicacion
de los resultados por medio de figuras y tablas adecuadas). Una
competencia de aprendizaje es la capacidad de una persona para
movilizar diversos tipos de recursos adquiridos (conocimientos,
habilidades, actitudes, valores) para hacer frente a situaciones y
contextos de la vida personal, social o laboral. Un resultado de
aprendizaje se define en términos del nivel verificable y factible de
conocimientos, habilidades y actitudes al final de una actividad
curricular especifica en un médulo del curso (las competencias definen
el nivel de desempeiio general).

e (Casos de estudio [3] de diversa naturaleza (sistemas dindmicos en
contexto) en la web del libro (la descripcion se da en el capitulo 7), de
una manera que se integran diferentes temas y niveles de desempeno,
enlazindolos con temas pasados (que permite el repaso vy
afianzamiento de competencias) y futuros (a modo de motivacion).
Los casos de estudio siempre incluyen pruebas de simulacién en
computador (capitulo 2) haciendo énfasis en asuntos de incertidumbre
y sensibilidad en los parimetros (seccion 2.10), de manera que se
obtienen soluciones mds atiles en la practicay se estd mucho mas cerca
de la implementacién en el sistema real.

e Ejercicios resueltos [4] en la web del libro con aplicacién del método
de solucién de problemas, de manera que se pueda profundizar en la
aplicacion de la teoria y mejorar las habilidades de solucion de
problemas y utilizacion de MATLAB. Los ejercicios estan clasificados
de manera que se identifica ficilmente el tema o temas que tratan.

e Ejercicios propuestos [5] y practicas con MATLAB [6] en la web del
libro, con una formulacidén que integra la teoria, el procedimiento de
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solucion de problemas, la verificacion [1] con MATLAB vy la adecuada
interpretacion de resultados. No se indica la soluciéon de cada
problema, dado que se exige su verificacion con MATLAB. Los
ejercicios estan clasificados de manera que se identifica facilmente el
tema o temas que tratan.

e Sitio web del libro [2], el cual incluye recursos sobre cada tema del
libro: espacio para formular preguntas y proponer respuestas, €jercicios
resueltos y propuestos, practicas con MATLAB, programas y recursos
de MATLAB y Simulink, linea histérica de los sistemas dindmicos y
sus temas afines dentro del contexto de la matematica, la ciencia, la
tecnologia, la computacién y la teoria de sistemas.

Para abordar este libro es necesario comprender los conceptos y métodos
basicos del algebra bdasica, trigonometria, dlgebra lineal, cdlculo diferencial,
cdlculo integral, calculo en wvarias variables y numeros complejos.
Adicionalmente, el lector debe manejar los elementos bdasicos de
programaciéon. Dada la importancia de las ecuaciones diferenciales y la
transformada de Laplace, en el libro hay una secciéon donde se resumen sus
principales conceptos y métodos descritos en términos de la variable
independiente ¢ (tiempo) y no la variable x, como sucede en los libros clésicos
de ecuaciones diferenciales.

La introduccién de cada capitulo contiene las i1deas generales vy
prerrequisitos, un resumen de cada uno de los temas, preguntas generales, la
competencia especifica de aprendizaje del capitulo y los respectivos
resultados de aprendizaje. Los ejercicios propuestos del capitulo 9 contienen
problemas simples para su solucién analitica y ejercicios un poco mas
complejos que integran varias competencias y requieren del uso de MATLAB.
Se pide al lector aplicar la técnica de la soluciéon de problemas y enlazar la
teoria con los procedimientos computacionales (programas de MATLLAB) para
su mejor comprension.

LLa solucién analitica de un problema matematico es una expresion
matematica explicita en términos de funciones conocidas, la cual se obtiene
aplicando de manera logica ciertas operaciones especificas. La solucion
numérica es una solucién en forma de ndmeros presentados por medio de
graficos o tablas. El andlisis de la solucién numérica se circunscribe solo a los
valores especificos de los pardmetros, es decir, solo se puede afirmar que un
pardmetro afecta cierta caracteristica de un sistema si se cambia en cierto
intervalo de estudio. La principal ventaja de la solucién analitica sobre la
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numérica es su capacidad de generalizar los resultados sin tener que probar
diversos escenarios; por ejemplo, la solucién analitica de una ecuacion
diferencial muestra directamente el efecto de cada parimetro.

La solucion de problemas es el proceso de diseno, evaluacién e
implementacion de una estrategia para responder una pregunta abierta o
lograr el objetivo deseado. Pasos del método de solucion de problemas, el cual
se puede ajustar a un formato IMRAD (/ntroduction, Methods, Results, And
Discussion)  [7]: 1) Planteamiento 'y comprension del problema
(INTRODUCCION). 2) Plan de solucién (METODOS). 3) Célculo de Ia
Resultados (solucién). 4) Verificacién [1] e interpretaciéon de la solucidon
(DISCUSION).

Las competencias genéricas para afianzar en este libro son:

1. Aplicar conceptos y métodos matematicos para representar y
comprender mejor los sistemas dindmicos, problemas y procedimientos
en distintos contextos y considerando sus caracteristicas y propiedades.

2. Resolver problemas con un enfoque formal para una mejor
comunicacion y argumentacién de los resultados obtenidos, por medio
de la documentacién de cada uno de sus pasos en un formato IMRAD
[7], de manera que se pueda organizar adecuadamente la informacion,
separando el problema, los métodos (propios o de otros autores) y los
resultados originales (resultados). La discusion se centra en la
interpretacién de los resultados, es decir, en la explicacién o traduccién
del sentido y principios fundamentales de algo en un lenguaje diferente
al original, de manera fiel y en un contexto o marco especifico que la
limita. A partir de una adecuada interpretacién se da respuesta a
preguntas del tipo “por qué”, es decir, se da sentido e importancia a los
resultados observados: identificar con la razon lo que los ojos no ven. El
conocimiento 1implica, de esta manera, la representacién e
interpretacion de los hechos observados con una reducciéon de los
errores € ilusiones inherentes a dicha proceso. No se debe confundir la
interpretaciéon con la descripciéon (proceso de obtencion de las
caracteristicas relevantes y distintivas de algo o alguien de manera
detallada y ordenada con un lenguaje apropiado y sin entrar en las
relaciones de los componentes y relaciones causa-efecto).

3. Aplicar herramientas computacionales para la solucion de problemas,
por medio del desarrollo de algoritmos y simulaciones documentados,
claros y simples en MATLAB.
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4. Aplicar el pensamiento sistémico en la modelacion matemadtica y

estructuraciéon de problemas (seccion 2.3) y sistemas para identificar
aspectos comunes con otros modelos similares, por medio de diagramas
de bloques de los sistemas con identificacién de variables y paraimetros.
Un parimetro es una magnitud fisica constante que determina la
estructura de un sistema mediante su valor numérico y que lo distingue
de otro semejante, por lo que los parimetros determinan coémo las
entradas se transforman en salidas; en un modelo matematico, estos son
los valores que no son variables. Una magnitud fisica es una propiedad
fisica que puede medirse (constante o variable).

Las competencias especificas para desarrollar en este libro son:

1.

3.

Formular diversas representaciones del modelo matematico de tiempo
continuo y tiempo discreto de los sistemas dindmicos para comprender
la influencia de los pardmetros y condiciones iniciales en la forma de la
solucién y extraer informacién importante y diferente de cada una de
ellas, por medio de su integracion en la solucién de problemas y casos
de estudio.

Implementar programas y simulaciones en MATLAB y Simulink para
la solucién numérica y comprensiéon del comportamiento (secuencia
de estados de un sistema) de sistemas dinamicos lineales y no lineales
a partir de su modelo matematico, considerando las limitaciones del
modelo y el papel de las incertidumbres del modelo, por medio de la
planificacién de los experimentos de simulacion, la documentaciéon y
organizacion adecuada de los programas, y la interpretacion correcta de
los resultados.

Analizar el comportamiento de sistemas dindmicos no lineales de
tiempo continuo y discreto alrededor de puntos de equilibrio de
interés con diversos métodos matematicos lineales, por medio de la
linealizacién y la validacién en simulacién con el modelo no lineal. El
andlisis generalmente se basa en gréficos de la respuesta temporal o
frecuencial del sistema ante diversas entradas, por lo que es muy util
saber bosquejarla antes de calcularla de manera exacta, lo cual
demuestra una minima comprensién del modelo. Bosquejar significa
graficar aproximadamente la solucién de un problema sin necesidad de
utilizar las proporciones correctas, lo cual implica una comprension
adecuada de dicha solucion.
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4. Disenar sistemas bdsicos de control lineal de tiempo continuo y
discreto para el logro de requerimientos establecidos de
comportamiento en lazo cerrado, por medio de métodos matematicos
y con la validacién en simulacién con el modelo no lineal.

5. Aplicar procedimientos y algoritmos de base matemadtica para la
identificacion de modelos matematicos lineales y la estimacién de
parimetros de modelos lineales y no lineales, por medio de una
adecuada planificacion experimental que incluye el procesamiento de
los datos experimentales, la seleccion de la mejor estructura del
modelo, la selecciéon del método de estimacion, los cdlculos con
MATTLAB, la validacién de los resultados y la adecuada documentacion
del modelo obtenido y sus parimetros.

6. Disenar un estimador del estado para la obtencién de las variables
desconocidas de un sistema dindmico no lineal cerca y lejos de un
punto de equilibrio de interés y su uso en la implementaciéon de
sistemas de control, por medio de métodos matematicos,
implementacion de algoritmos en MATLAB, pruebas en simulacion
sobre el modelo no lineal, y anilisis y documentacion de los resultados.

El libro puede utilizarse en un curso de introduccién a las ecuaciones

diferenciales ordinarias con orientacién a las aplicaciones y a la motivacion,
siguiendo ideas como las presentadas en [8]: (i) hacer énfasis en las
ecuaciones diferenciales de orden superior y la ecuacion de estado, las cuales
son mas cercanas a problemas reales; (i1) resaltar la importancia de los cambios
de variables y las formas canénicas; (iii) enlazar los problemas no lineales con
su aproximacion lineal por medio de la linealizacion; (iv) aplicar métodos
numéricos y simulacién; (v) utilizar el método de la transformada de Laplace
en el marco de la funcién de transferencia y el teorema de convolucidn; (vi)
presentar ejemplos reales o cercanos a la realidad, mostrando la fase de la
modelacién matemadtica, la relacion sistémica y grafica entre los subsistemas,
el andlisis dimensional y una introduccion a la modelacién experimental con
métodos simples; (vii) ensenanza de conceptos claves como la relacién entre
el orden de la ecuacion diferencial y el nimero de integradores (diagrama de
simulacién), el efecto de los polos y ceros, la estabilidad, la relacién entre la
ecuacion no homogénea vy las variables exdgenas del sistema, la aplicacion del
teorema de convolucién, la relacion entre diferentes representaciones de un
modelo (ecuacion diferencial, ecuacion de estado, funcion de transferencia),
el andlisis en el plano de fase, las caracteristicas no lineales, las caracteristicas



temporales y frecuenciales, entre otros; (viii) resaltar la importancia del
analisis de incertidumbre y la teoria de errores y aproximacion (secciéon 2.10.1)
en los problemas reales.

Para terminar, el autor quiere agradecer a la Universidad EAFIT por su
apoyo decidido a esta propuesta con las posibilidades que brinda de libertad
de cdtedra, descargas académicas para la preparaciéon de material académico,
periodos sabaticos y apoyo del Fondo Editorial. [gualmente, el autor agradece
especialmente a los estudiantes de los cursos de Sistemas Lineales y
Modelacion Experimental del programa de Ingenieria Matematica, quienes a
lo largo de mds de 20 afios le ayudaron a perfilar mejor los temas y orden del
libro y a explicarlos de una mejor manera. Finalmente, el autor dedica este
libro a Ami, Mario Alejandro y a todas las personas que lo han apoyado siempre
con su amor y paciencia.



1 Fundamentos matematicos de los sistemas
dinamicos

1.1 Introduccidon

En este capitulo se presentan los principales métodos matematicos para el
estudio de los sistemas dindmicos. Algunos métodos, como las ecuaciones
diferenciales ordinarias, la transformada de Laplace y la transformada z, se
presentan de manera detallada en otros textos, pero aqui se dan Gnicamente
los principales conceptos e ideas y se resuelven algunos ejercicios con el fin
de tener acceso ripidamente a dichos métodos. No obstante, se invita a los
lectores a recurrir a las referencias especificadas para profundizar en estos
temas. Por el contrario, otros temas, como la funcién de transferencia y las
ecuaciones en el espacio de estado, se presentan de manera extensa y
completa. Si el lector conoce bien estos métodos matematicos puede pasar al
siguiente capitulo. Se recomienda al lector repasar los temas de algebra
elemental (polinomios, raices de un polinomio, factorizacién), trigonometria,
nimeros complejos, célculo diferencial, calculo integral y dlgebra lineal
(determinantes, matrices, ecuaciones lineales, independencia lineal, valores
y vectores propios, transformaciones lineales).

Un sistema dindmico es un sistema de tiempo continuo (o discreto) con
un namero finito de grados de libertad y que puede representarse
matemadticamente por medio de ecuaciones diferenciales (o en diferencias)
que dependen del tiempo. Un grado de libertad es cada uno de los
movimientos basicos que definen completamente el cambio de un sistema. A
cada grado de libertad le corresponde una variable. Por ejemplo, una particula
tiene seis grados de libertad (tres posiciones espaciales y tres velocidades de
traslacion); un cuerpo rigido tiene 12 grados de libertad (tres posiciones
espaciales, tres posiciones de rotacion, tres velocidades de traslacion y tres
velocidades de rotacién); un ascensor tiene dos grados de libertad (una
posiciéon y una velocidad verticales); y un circuito eléctrico basico con un
inductor y un capacitor tiene dos grados de libertad (corriente y voltaje).

La existencia de una ecuacioén diferencial (o en diferencias) asociada a un
sistema, la necesidad de especificar ciertas condiciones iniciales o la
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dependencia de los valores pasados de las variables, son indicios de que el
sistema es dindmico; se dice en estos casos que el sistema tiene memoria. Un
sistema dindmico se caracteriza por su modelo matematico, diferentes tipos
de variables, parametros, condiciones iniciales y perturbaciones. Lo contrario
a un sistema dindmico es un sistema estatico, un sistema continuo o discreto
que se puede modelar matematicamente por medio de ecuaciones algebraicas
que relacionan directamente las salidas con las entradas. Si no hay necesidad
de especificar condiciones iniciales ni una dependencia de los valores actuales
de las variables de sus valores pasados, entonces el sistema es estatico; se dice
en estos casos que el sistema 7o tiene memoria.

Este capitulo inicia con un repaso de las ecuaciones diferenciales ordinarias
lineales, cuya comprension es la base para el estudio de los sistemas
dindmicos. Aqui es necesario comprender muy bien lo que es la variable
dependiente, la variable independiente, el término independiente, el orden
de la ecuacién, la solucién de la ecuaciébn homogénea (sin término
independiente), la soluciéon de la ecuaciéon no homogénea (con término
independiente), la solucién general, la ecuacién caracteristica, las raices
caracteristicas, la soluciéon particular y el método de coeficientes
indeterminados. [.o mds importante es poder imaginar la forma de la solucion
de la ecuacion diferencial a partir del valor de las raices caracteristicas y la
forma del término independiente.

Luego se desarrolla el tema de las ecuaciones en diferencias lineales de una
manera analoga a las ecuaciones diferenciales utilizando los mismos conceptos
y métodos, pero adaptados al caso discreto. Las ecuaciones en diferencias se
obtienen al discretizar en el tiempo las ecuaciones diferenciales ordinarias con
el fin de implementarlas en un computador digital. Aunque, en general, se
recurre a la solucién iterativa de las ecuaciones en diferencias por su facilidad
para implementarse en un computador digital, se presenta también la soluciéon
analitica exacta para comprender mejor la forma de las soluciones. De esta
manera, con la vision de la solucion de las ecuaciones diferenciales y
ecuaciones en diferencias lineales se tiene allanado gran parte del camino para
el estudio de los sistemas dindmicos. Es importante resaltar que en el libro se
desarrollan de manera paralela los métodos para sistemas de tiempo continuo
y tiempo discreto dado que, en general, los métodos son equivalentes. No es
necesario, por lo tanto, como se hace en otros textos, desarrollar primero el
enfoque continuo y luego el discreto.



1. Fundamentos matemadticos de los sistemas dindmicos

Existen diferencias entre una senal de tiempo discreto y una senal digital,
y un proceso de discretizacion y uno de digitalizacion, pero en la practica
ambos conceptos se toman como equivalentes y solo se especifican mejor
cuando es necesario. De hecho, en el Diccionario de la Real Academia
Espanola solo aparece la palabra “digitalizar” y no aparece la palabra
“discretizar”. En control, se puede discretizar un disefio final continuo o
realizar un diseno basado en la discretizacién del modelo del proceso. En el
primer caso (método indirecto), el disenador trabaja siempre en tiempo
continuo y al final, si se requiere una implementacion discreta, discretiza la
solucién que obtuvo (los resultados deseados son muy parecidos si el periodo
de muestreo es bastante pequeno). En el segundo caso (método directo), el
disefiador discretiza el modelo del proceso (con un periodo de muestreo
adecuado y correcto, no necesariamente demasiado pequeno) y realiza todo el
proceso de disefo y andlisis a partir del modelo discretizado; este es el mejor
enfoque y el que brinda mayores posibilidades al disefiador. En la seccién 1.5.2
se discute la correcta seleccion del periodo de muestreo.

Mis adelante se presentan los temas relacionados con la transformada de
Laplace (para resolver modelos continuos lineales con coeficientes constantes
e interpretar el comportamiento en términos de la frecuencia) y la
transformada z (para resolver modelos discretos lineales con coeficientes
constantes e interpretar el comportamiento en términos de la frecuencia).
Estas dos transformadas son la base de la funcion de transferencia. Como se
verd, estos métodos permiten resaltar de manera explicita algunas
caracteristicas del modelo (como los polos y ceros) y resolverlo de una manera
mas simple. También se muestra la relacion entre las variables s y z para
enlazar las caracteristicas del espacio continuo y el discreto.

Finalmente, se explica la representacion en el espacio de estado, el método
mas completo de modelacién matematica y la base de los temas de simulacion
del Capitulo 2 (Modelacién matematica y simulacion de sistemas dindmicos).
En el espacio de estado se obtienen la mayor informacién posible de un
sistema dindmico. Aunque se presenta el método para sistemas no lineales, el
énfasis se hace en el caso lineal, el cual se relaciona directamente con la
funcién de transferencia y las ecuaciones diferenciales ordinarias. Los
diferentes métodos de modelacion matemadtica se deben utilizar
adecuadamente para aprovechar lo mejor de cada uno, por lo que su
equivalencia se muestra al final del capitulo. Sin embargo, es importante
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aclarar que de los tres métodos de modelacion solo la funcion de transferencia
es especifica para sistemas lineales.

A pesar del fuerte componente matematico de este capitulo, el lector debe
verlo como una oportunidad para repasar conceptos y métodos estudiados
previamente, pero ahora enlazados con otros temas € incorporados en métodos
computacionales y en simulaciones. Ademads, cada concepto puede tener ahora
mucho mads sentido que antes. Por ejemplo, la transformada de Laplace en el
contexto de la funcién de transferencia tendrd mds sentido al evidenciar
muchas caracteristicas importantes de los sistemas dindmicos; las raices
caracteristicas ahora permiten visualizar la forma de la respuesta temporal de
un sistema dindmico; la importancia de las transformaciones lineales se
observa al resolver ecuaciones de estado desacoplando las variables.

De esta manera, se invita al lector a pensar en respuestas tentativas a las
siguientes preguntas:

e (Qué aporta la matematica en el estudio de los sistemas dindmicos?

e (Por qué existen diferentes enfoques de modelacién matematica de
sistemas dindmicos y qué ventajas tiene cada unor

e (Por qué no se pueden resolver analiticamente todas las ecuaciones
diferenciales no lineales y qué implicaciones tiene esta realidad?

e J(Por qué es importante representar matematicamente sistemas
dindmicos de tiempo continuo y tiempo discreto, y como se relacionan
ambos modelos?

e (Qué representa fisicamente el orden de una ecuacion diferencial v,
por lo tanto, del sistema dindmico, y qué significa que un sistema se
pueda representar por modelos de orden diferente?

e (Quérepresenta fisicamente el retardo de un sistema dindimico y cémo
se modela matemdticamente’

e (JCudles son las ventajas de la modelaciéon de sistemas dindmicos por
medio de las ecuaciones en el espacio de estado y qué sentido tiene
una variable de estado?

e (Por qué se deben resolver analiticamente los modelos lineales de
sistemas dindmicos si existen herramientas computacionales que lo
hacen de una manera muy eficiente?

Las competencias de aprendizaje del capitulo son:

e Aplicar conceptos y métodos matemadticos para representar y
comprender mejor los sistemas dindmicos, problemas vy
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procedimientos en distintos contextos y considerando sus
caracteristicas, propiedades, ventajas y desventajas.

Formular diversas representaciones de tiempo continuo y discreto de
los sistemas dindmicos para comprender la influencia de los
pardmetros y condiciones iniciales en la forma de la solucion y extraer
informacién importante y diferente de cada una de ellas, por medio de
su integracion en la solucion de problemas y casos de estudio.

Los resultados de aprendizaje que debe demostrar el lector al finalizar el
capitulo son:

Identifica las caracteristicas de una ecuacion diferencial lineal y su
solucién, con el fin de entender el comportamiento de un sistema
dinamico de tiempo continuo.

Identifica las caracteristicas de una ecuacidon en diferencias y su
solucién, con el fin de entender el comportamiento de un sistema
dindmico de tiempo discreto.

Aplica las propiedades de la transformada de Laplace a la solucién de
ecuaciones diferenciales lineales, con el fin de resolverlas de manera
rapida y eficiente y obtener la funcién de transferencia.

Aplica la transformada z a la solucion de ecuaciones en diferencias
lineales, con el fin de resolverlas de manera rapiday eficiente y calcular
la funcién de transferencia

Identifica las caracteristicas basicas de la funcién de transferencia de
un sistema dindmico lineal de tiempo continuo o discreto, con el fin
de entender algunas caracteristicas basicas del sistema.

Identifica las caracteristicas bdsicas de las ecuaciones en el espacio de
estado de un sistema dindmico lineal de tiempo continuo o discreto,
para entender algunas caracteristicas basicas del sistema.

Discretiza modelos matematicos de sistemas dindmicos lineales a
partir de sus distintas representaciones, para conectar las ventajas de
los enfoques de tiempo continuo y discreto.

Relaciona los diferentes métodos matemadticos de modelaciéon de
sistemas dindmicos lineales, con el fin de encontrar sus caracteristicas
bésicas desde diferentes puntos de vista.
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1.2 Ecuaciones diferenciales de sistemas dinamicos lineales
de tiempo continuo

1.2.1 Conceptos

Una ecuacién diferencial es una ecuacion que contiene derivadas [9]. Existen
ecuaciones en derivadas ordinarias (EDO) y ecuaciones en derivadas parciales
(EDP). Las ecuaciones diferenciales ordinarias, objeto de este libro,
contienen derivadas ordinarias (dy/dt) y se aplican a sistemas con parimetros
concentrados (no necesariamente constantes), es decir, a aquellos sistemas
donde se puede considerar que un pardmetro toma un valor puntual (masa,
longitud, resistencia, tasa, etc.) que no cambio considerablemente durante el
tiempo del estudio y no es necesario considerar su distribucién en el espacio.
La siguiente ecuacidn representa una ecuacion diferencial ordinaria, donde y
es la variable dependiente, ¢ es la variable independiente, n es el orden de la
ecuacion diferencial (derivada de mayor orden en la ecuacién) y f es una
funcién que relaciona las variables y derivadas:

(n) d"y

y =—2 (1.1)

(n)
t’ ) 9 PR )207
f( Y U, Y Y T

Por ejemplo, la siguiente es una ecuacion diferencial de tercer orden:
Y+ 3t(3)? + cosy = cost

Una variable es una magnitud que cambia con el tiempo y puede tomar un
valor cualquiera de un conjunto dado. Al término de la ecuacién diferencial
que no contiene la variable dependiente o sus derivadas se le llama término
independiente. Por ejemplo, en la ecuacion de arriba el término
independiente es cost. Generalmente, el término independiente contiene la
entrada del sistema, es decir, una variable exégena manipulable que se aplica
para modificarlo de alguna manera. Se dice que un sistema dindmico es un
sistema auténomo si no aparece de manera explicita la variable
independiente; de manera similar, se dice que se tiene una ecuacién
diferencial auténoma. La solucién de la ecuacién diferencial corresponde a la
salida del sistema, es decir, a la variable que representa un cambio observable
y medible, generalmente como respuesta a una entrada.
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Las ecuaciones diferenciales pueden ser lineales o no lineales.
Matematicamente, una ecuaciéon diferencial es lineal si cada uno de los
términos que contiene la variable dependiente es de grado 1, lo que significa
que, al quitar los coeficientes y las derivadas de cada término, la variable
dependiente aparece aislada. En el ejemplo de arriba, en el segundo término,
después de quitar la derivada, la variable dependiente y estd elevada al
cuadrado, por lo que ese término es de grado dos. En el tercer término, la
variable dependiente estd dentro de la funcién coseno, la cual se puede
descomponer en una serie infinita de Taylor dada por la ecuacién (3.4), por lo
que el término es de grado infinito.

Fisicamente, una ecuacion diferencial es lineal si cumple con el principio
de superposicion (seccion 3.3.1). Se puede determinar experimentalmente si
un sistema estable es o no lineal aplicando una entrada constante, observando
en qué valor se estabiliza, variando esa entrada constante y trazando una curva
por medio de los puntos obtenidos: si es una linea recta, el sistema es lineal o
lo es en una region determinada. Si el sistema es inestable es necesario
estabilizarlo por medio de un controlador.

En el caso de las ecuaciones diferenciales ordinarias lineales, estas pueden
ser con coeficientes constantes (lineal invariable en el tiempo, Linear Time
Invariant, L'TT) o con coeficientes variables (lineal variable en el tiempo,
Linear Time Variant, I'TV), siendo las primeras las que se pueden resolver
analiticamente en término de funciones elementales. Un sistema LL'TT es un
sistema lineal en el cual ante una entrada con un retardo la salida es la misma
sin retardo, pero desplazada en ese tiempo de retardo; es decir, la salida es la
misma sin importar el momento en el que se aplica la entrada.

La solucion analitica de la ecuacion diferencial esta dada por un conjunto
de funciones definidas en cierto intervalo tales que al derivarlas satisfacen la
ecuacion diferencial. En las siguientes secciones se estudia la manera de
resolver algunas ecuaciones diferenciales. Las ecuaciones LTI siempre se
pueden resolver y las ecuaciones LTV se resuelven por medio de series de
potencias (no se estudian en este libro). No existen métodos generales para
resolver las ecuaciones diferenciales no lineales y normalmente se obtiene solo
la solucién numérica.
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1.2.2  Ecuaciones diferenciales de primer orden con variables separables

Muchos problemas se pueden modelar por medio de ecuaciones diferenciales
de primer orden, por lo que a continuacién se presentan algunos casos
especiales de ecuaciones lineales y no lineales. En el caso no lineal existen
algunas formas especiales que se pueden resolver analiticamente (variables
separables, lineales, exactas, por sustitucion, de Bernoulli, etc.) pero solo
algunas de ellas se presentan a continuacion, con el objetivo de introducir las
ideas generales. Un hecho importante a resaltar es que los métodos para la
solucion numérica de ecuaciones diferenciales se aplican solo a modelos de
primer orden, dado que siempre es posible reducir una ecuacién diferencial
de orden n a necuaciones diferenciales de primer orden (seccion 1.8.2). La
forma general de una ecuacion diferencial de primer orden es:

dy
Y= ftw) (1.2

En primer lugar, las ecuaciones diferenciales de primer orden con variables
separables permiten reducir el problema a uno de integracién con respecto a
cada variable (el problema se reduce a la aplicacién y buen manejo del célculo
integral):

dy

i f(t,y) = g(y)h(t) (1.3)

La solucion es:
dy /
—4+C, = h(t)dt + C.
[y +en= [ e,

Dado que al integrar cada término se generan dos constantes arbitrarias,
pero se pueden unir en una, la solucién tiene una sola constante arbitraria. A
dicha solucién se le llama solucién general y corresponde a una familia de

soluciones:
dy /
— = | h(t)dt+C 1.4
/ 9(y) () (14

En la anterior solucién no hay restricciones generales (en algunos casos la
funcién no es integrable) sobre la forma de la funcién f(y) y, por lo tanto, es
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aplicable a modelos lineales o no lineales. Por ejemplo, sea la siguiente
ecuacion diferencial:

dy
_— = —_— 1
7 yly —1)

La ecuacion es no lineal debido a que hay un término de grado 2 (3?), pero
se puede resolver ficilmente:

Dado que en el numerador se tiene el producto de dos polinomios, se
pueden aplicar las fracciones parciales:

1 1

/(———)dy:/dt+0, Inly — 1| —Injy|=t+C
y—1 y

Organizando y aplicando las propiedades de los algoritmos se obtiene:

1 1 1
Y ‘:t+C, Y7 _ettC, 12 =Cel, C—eCC——C
Yy Yy Yy

1
y_1+Cet

In

Para comprobar que la solucidn es correcta se debe derivar y reemplazar en
la ecuacién diferencial. El siguiente cddigo con la herramienta de matematicas
simbdlicas de MATLAB (Symbolic Math Toolbox) permite encontrar la solucién
simboélica del problema:

syms y(t)
Dy = diff(y,t,1); ecu = Dy == y*(y-1); sol = dsolve(ecu)

La solucidn, equivalente a la obtenida analiticamente, es:

sol =
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El MATLAB entrega 3 soluciones, donde la segunda (y = 0) corresponde
a una solucion singular que no puede obtenerse de la soluciéon general
asignando un valor a la constante arbitraria C' (al derivarla satisface la ecuacion
diferencial). Sin embargo, la tercera solucién (y = 1) si se obtiene de la
solucién general haciendo C' = 0. El grifico de una familia de soluciones para
diferentes valores de la constante C' (Fig. 1.1) se puede obtener a partir del
siguiente c6digo:
t=0:0.01:10; % Definicidn de los instantes de t para el calculo de la solucién
hold on % Para retener en un solo grafico varias curvas
for C=1:1:10

y = 1./(1+C*exp(t));

plot(t,y)
end

xlabel ('Tiempo'), ylabel('y(t)'), legend({'C=1','C=2','C=3','C=4','C=5','C=6','C=7",'C=8','C=9','C=10'})
hold off % Para evitar que se sobrepongan otras figuras mas adelante
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Fig. 1.1  Familia de soluciones de una ecuacion diferencial de primer orden
Las soluciones anteriores no se cruzan en ningin punto en el caso de
ecuaciones de primer orden, dado que solo se tiene una constante arbitraria y

esta se puede hallar dando en un punto los valores a las variables dependiente
e independiente. Una practica comun consiste en utilizar como dicho punto

10
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el valor en ¢t = 0, es decir y(0) = y,, a lo cual se le llama la condicién inicial.
La solucion especifica que pasa por el punto y(0) = y, se denomina solucién
particular. Al problema de hallar la solucién general de una ecuacién
diferencial y luego, a partir de la condicién inicial, hallar la solucién particular,
se le denomina el problema de valor inicial:

(dy
y(to) = Yo

En el ejemplo anterior, si y(0) = 0.5, entonces C' = 1, como se observa en
la figura de arriba:

1

0.5 =———
1+ Cel’

Cc=1

Ver los ejercicios resueltos [4] 1.25 y los gjercicios propuestos [5] 1.1 en la
web del libro.

1.2.3  Ecuaciones diferenciales de primer orden lineales

Otro tipo especial de ecuaciones diferenciales de primer orden que se pueden
resolver siempre son las ecuaciones lineales de primer orden, las cuales tienen
la siguiente forma:
dy

— +a(t)y = u(t) (1.6)
dt

Si u(t) = b = const y a(t) = a = const, la ecuacion es equivalente a una
ecuacioén con variables separables:

dy dy 1
dt+ay , /ay—b /dt, - n|ay — b +C
b+ Ce
/yzi
a

Cuando a(t) =a =const (la llamada ecuacibn con coeficientes
constantes) se puede aplicar la teoria de la secci6n 1.2.5 (Ecuaciones

11
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diferenciales lineales de orden superior). Si a(t) depende del tiempo se
tiene una ecuacién con coeficientes variables y el método de solucion es muy
especifico y se llama el método del factor integrante. En efecto, si se
multiplica la ecuacion (1.7) por una funcién pu(t), llamada el factor integrante,
tal que el término de la izquierda es la derivada exacta de un producto, se
tiene:

u(0) Lt pityaltyy = ptyue), ()] = (el

Dado que

Clnttn) = un) 24 W

La derivada se cumple si:

W ittt

Resolviendo la anterior ecuacién con variables separables se tiene (no es
necesaria la constante arbitraria, dado que con cualquier valor el método
funciona):

[L= [atwar, uie) = el
14

Por ejemplo, sea la siguiente ecuacion lineal con coeficientes variables:

El factor integrante es:
p(t) = e2J avdt — Q2 I 2t _ 2
Multiplicando la ecuacién por dicho factor:

dy 2 d(yt?) / /
22 4 Sty = ¢2 = t2 dyt?) = [ t2dt +C

Integrando se obtiene:

12
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2 t3 t —2

Para hallar la solucién particular no se puede dar una condicién inicial con
t = 0, pero si en otro valor. Sea el siguiente problema de valor inicial:
LY

2==1

=0
a2 =L y(1)

La constante arbitraria toma el siguiente valor:

1 1
0==-+C172, C=—=
3 + ’ 3
La solucién particular es:
W=lrorz=lir
VW3 ~3

Grafico de la solucidn:

5r

y(1)=0
45} y(1)=1
y(1)=2
4t y(1)=3
\ y(1)=4
y(1)=5

35 ‘-\ ———t3

3t

1 1.5 2 25 3 3.5 4 45 5
Tiempo

El siguiente codigo de MATLAB permite obtener la solucion general, la
solucidon particular y graficar la familia de soluciones que se dan arriba:

syms y(t)
Dy = diff(y,t,1); ecu = Dy + 2*y/t == 1; sol_gral = dsolve (ecu); ci = y(1) == 0; sol_par = dsolve(ecu,ci);

13
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hold on
for i=0:5
ci=y(1) ==i; sol_par = dsolve(ecu,ci); fplot(sol_par)
end
xlim([1 5]), xlabel('Tiempo'), ylabel('y(t)'), legend({'y(1)=0",'y(1)=1","y(1)=2","y(1)=3",'y(1)=4","y(1)=5"})
hold off

LLa familia de soluciones se muestra en el grafico de arriba, donde se observa
que la solucién pasa por la condicién inicial y que con ¢ — oo la solucién
tiende a una funcién ¢ /3.

Ver los ejercicios propuestos [5] 1.1 en la web del libro.

1.2.4 Teorema de existencia y unicidad para ecuaciones de primer orden

En el ejemplo de la seccién anterior no se puede obtener una solucién
particular para una condicién inicial del tipo y(0), lo cual lleva a la necesidad
de conocer de antemano las condiciones bajo las cuales un problema de valor
iicial tiene solucion y esta es Unica. Esa condicién la da el teorema de
existencia y unicidad de Picard, el cual establece la condicién suficiente, mas
no necesaria (si se cumple se garantiza que hay solucién, pero de lo contrario
no se sabe nada), para que el problema de valor inicial (1.5) tenga soluciéon y
sea Ginica en una regi6n cercana a t,: las funciones f (¢, y) y su derivada parcial
0f/ Oy deben ser continuas en una region D alrededor de (¢, y,)-

En el ejemplo mencionado, ninguna de las dos condiciones anteriores se
cumple para el valor de ¢, = 0, por lo cual no puede garantizarse una solucién
en ese punto (la condicién no es necesaria), pero si en otros. En realidad, al
resolver la ecuacidon se observa que en ese punto no existe una soluciéon
particular.

En otro ejemplo, sea la siguiente ecuacion diferencial:

Ve y0)=0

La funcién f(t,y) = ty'/? es continua en t = 0, pero df/ dy = 0.5ty /2
no lo es, por lo que no se puede garantizar una solucién Unica. LLa ecuacién es
de variables separables y su solucién es y = (2?/4 + C)?, por lo que para
y(0) =0, C =0y se tiene una solucién particular de la forma y = 2% /16.
Dado que existe una solucion, el teorema asegura que la solucion no es tGnica.

14
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En efecto, y = 0 también es una solucién, y no se obtiene de la soluciéon
particular; es decir, corresponde a una solucién singular.

De otro lado, aunque el teorema especifica ficilmente si hay solucion
Unica, en la practica la region D puede ser tan pequena que el resultado puede
carecer de valor. Por ejemplo, sea el siguiente problema de valor inicial:

Z—i =t +y%  yte) = v

Dado que las funciones f =t*+y? y 8f/ Oy = 2y son continuas para
cualquier valor de t y y, entonces el problema de valor inicial tiene solucién
Gnica. Aunque no existe una solucién analitica para el problema, si se puede
encontrar una solucién numérica, la cual existe en un intervalo muy estrecho.

En general, si se observan comportamientos extrafios en la solucion
numérica se debe probar con diferentes métodos numéricos y diferentes pasos
del método para descartar problema de no existencia de la soluciéon. No
obstante, dado que los sistemas dindmicos reales a nivel macro siempre tienen
un comportamiento Unico, es de esperar que sus modelos, si estdn bien
planteados, tengan soluciones Unicas; si no las tienen, eso puede ser un
indicativo de una mala modelacién matematica.

1.2.5 Ecuaciones diferenciales lineales de orden superior

La siguiente expresion plantea un problema de valor inicial de una ecuacién
diferencial ordinaria lineal con coeficientes constantes (objeto de este libro),
donde u(t) es el término independiente, a; son coeficientes constantes y ¥,
corresponde a uno de los valores de las n condiciones iniciales:

d"y dnfly dy
t — ul(t
g A gpm t gt any = ull) (1.7)
) (n—1)
y(0) = 3/0173/(0) =Yo25--+» Y (0) = Yon

La solucién general y(t) de la ecuacion diferencial ordinaria de orden
superior, es decir, la funcién que satisface la ecuacion diferencial consta de
dos partes: la familia de soluciones y, (t) de la ecuacién homogénea (u = 0)
con constantes arbitrarias ¢;, llamada solucién complementaria, y una solucién
Y, (t) de la ecuacién no homogénea (u # 0) que depende de la forma del
término independiente especifico u(t):
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Y(t) = yp(t) + Ynn(t) (1.8)
La solucion general, la cual contiene n constantes arbitrarias, es la familia
de n soluciones linealmente independientes. Las funciones {y,,¥s, ", ¥, }

son linealmente independientes si la siguiente expresién se cumple si y solo
stc; = ¢y =--=¢, =0:

iy + Y+ -+ ¢y, =0 (1.9)

o
[
a
-
=
2

Fig. 1.2 Condiciones iniciales para ecuaciones diferenciales de orden 1 (izquierda) y orden
2 (derecha)

Una solucién particular es una de las soluciones que satisface las
condiciones iniciales: pasa por un punto determinado y(0) y en ese punto
tiene una pendiente ¢(0), una concavidad §(0) y asi sucesivamente hasta la
derivada (n — 1). Por ejemplo, en la Fig. 1.2 se muestra que una ecuacién
diferencial de orden 1 tiene una familia de soluciones que pasan todas por
distintos puntos, por lo que especificando un punto se selecciona la solucién
particular (no hay forma de que dos soluciones de una ecuacién diferencial de
orden 1 pasen por el mismo punto). De manera equivalente, una ecuacidon
diferencial de orden 2 tiene dos familias de soluciones y muchas de ellas pasan
por un mismo punto, pero ninguna tiene la misma pendiente en ese punto,
por lo que es necesario indicar el punto por el que pasany la pendiente en ese
punto. Segin el teorema de existencia y unicidad para ecuaciones lineales con
coeficientes constantes, el problema de valor inicial para dichas ecuaciones
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siempre tiene solucidn y es tnica para todo valor de la variable independiente
t.

Para la solucién de la ecuacién homogénea se debe obtener la ecuacion
caracteristica (1.10) y sus raices caracteristicas , la cual se obtiene buscando
la solucién en la forma y = e*. Se presentan tres casos de raices
caracteristicas: reales diferentes, complejas diferentes y raices multiples.

AN+ a A"+ ta, A+a, =0 (1.10)
/\ Im(z)
P z:(xtz’,@

z=re

r
¥
—>
Re(z)

Fig. 1.3 Namero complejo en coordenadas cartesianas (rectangulares) y polares

Los nimeros complejos (C) son la familia méds grande de nimeros, dado
que contiene tanto los nimeros reales (R) como los nimeros imaginarios (1).
Los nimeros imaginarios surgen al obtener la raiz cuadrada de un nimero
negativo: i = v/—1, i2 = —1, i = —i, i* = 1, i° = i y se repite el ciclo. Un
nimero complejo tiene parte real («) y parte imaginaria (3): z = « + . Los
nimeros complejos se pueden representar en coordenadas cartesianas
(z = a+i8)) o polares (z = re'?), tal y como se muestra en la Fig. 1.3.

De la Fig. 1.3 se tiene la relacion entre las representaciones cartesianas y
polares de un nimero complejo:

r=+/a2+ 2, @zarctang (1.11)

Q= TCOSY, B = rsenyp (1.12)
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Por ejemplo,

z1=1+14, a=1, =1

1
r=+/a2+ B2 =12, @zarctangzarctanizg,

: iy
z = re'? = +/2¢'4

Sobre los nimeros complejos se pueden realizar las operaciones
aritméticas, para lo cual es suficiente considerar que i =+/—1 es la
representacion de un ndmero. En ciertas operaciones es util utilizar la
representacion cartesiana y en otras la representacion polar (en este caso es
importante entender la funcién arctan y su signo).

Si A = a4+ 118 es un ndmero complejo con multiplicidad m, entonces la
solucion de la ecuacion homogénea estd conformada por las siguientes
funciones linealmente independientes y sus respectivas constantes arbitrarias
(pueden deducirse de la expresion los casos de raices reales e imaginarias):

(¢ cosft 4 cosenfit) + t(cgcosft + ¢ senft) + -

1.13
et ey, COSPE + ¢y, senSt) (113)

Yn(t) = e

El nimero de constantes arbitrarias de la soluciéon complementaria es igual
al orden de la ecuacién diferencial. Si una raiz caracteristica tiene una
multiplicidad m, entonces es necesario multiplicar por t™ para obtener
soluciones linealmente independientes.

Se llama conjunto fundamental de soluciones al conjunto de n soluciones
linealmente independientes de una ecuaciéon homogénea de orden n. Un
conjunto de soluciones es linealmente independiente en cierto intervalo
(todo el eje real en el caso de ecuaciones lineales con coeficientes constantes)
si y solo si el siguiente determinante, llamado el wronskiano, es diferente de
cero:

U Yo U
(] Yo = Yn
W(t) = ;1 ;2 .. |#F0 (1.14)
(n—1) (n-1) (n—1)
Y1 Y Yn

18



1. Fundamentos matemadticos de los sistemas dindmicos

Es importante anotar que si o < 0 en la solucién anterior, entonces se
obtendrin soluciones e~ 1** que desaparecerdn en el tiempo, es decir, que
convergen a un valor. Si todas las raices cumplen con la condicién anterior,
entonces el sistema se considera asintdticamente estable (ver seccion 3.5 para
mas detalles). Cuando hay raices maltiples, la solucién se multiplica por ¢,
por lo que una solucién sinusoidal o constante se puede volver inestable.

Para hallar la solucién de la ecuacién no homogénea se pueden utilizar dos
métodos: el método de coeficientes indeterminados (método simple
algebraico aplicable solo cuando se tiene un término que contiene un
polinomio, una funcién exponencial, una funcién sinusoidal o un producto
simple de ellos) o el método de variacién de las constantes (método general,
pero que requiere de integraciones). En el método de coeficientes
indeterminados la solucién particular tiene la misma forma del término
independiente. Por ejemplo, si el término independiente es un polinomio la
soluciéon particular también serd un polinomio del mismo grado con
coeficientes indeterminados, y si el término independiente es una funcién
sinusoidal la solucién particular serd una sefal sinusoidal de cierta amplitud y
fase (o una suma de una funcién seno y una funciéon coseno con coeficientes
indeterminados); en ambos casos se debe multiplicar por t" para hallar
soluciones linealmente independientes si la solucion particular ya estd en la
solucion general. Es decir, si el término independiente tiene la forma (1.15),
entonces la solucion de la ecuaciéon no homogénea tiene la forma (1.16),
donde A,, B, , P, v Q,, son polinomios de grado mayor n (los dos primeros
con coeficientes conocidos y los dos ultimos con coeficientes
indeterminados), y m es el nimero de veces que hay que multiplicar el
término por ¢t para que la solucion resultante no esté dentro de la solucién
complementaria.

u(t) = e*[A, (t)senft + B, (t)cosft] (1.15)

Y (t) = t™e* [P, (t)senft + Q,, (t)cosft] (1.16)

El método anterior es dificil de aplicar al caso en el que el término
independiente es una funcién definida por partes, dado que alli es necesario
dividir la solucion en diferentes fases, en cada una de las cuales la parte
izquierda de la ecuacion diferencial es la misma, pero el término
independiente cambia y las condiciones iniciales en cada segmento
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corresponden al valor de la solucién anterior en ese instante de tiempo. En
estos casos es mejor aplicar el método de la transformada de Laplace (secciéon
1.3). Para las funciones definidas por partes se utiliza la funcién escalén
unitario o de Heaviside, dada por la siguiente expresion:
0, t<7
ut—m)={} (1.17)
1t ) 1, t>71
Ver los ejercicios resueltos [4] 1.1y 1.2 y los ejercicios propuestos [5] 1.2
en la web del libro.

ESPACIO TEMPORAL ESPACIO FRECUENCIAL

Transformada
Transformadas basicas
Propiedades

Operaciones aritméticas
Ecuaciones algebraicas
Derivadas, integrales
Ecuaciones diferenciales
Ecuaciones integrales
Ecuaciones difero-integrales

Transformada inversa
Fracciones parciales

Transformadas basicas
Propiedades

Operaciones aritméticas
Ecuaciones algebraicas

Fig. 1.4 Interpretacion de la utilidad de la transformada de Laplace

1.3 T'ransformada de Laplace
1.3.1  Definicion

La transformada de Laplace es una integral con ciertas propiedades que tiene
aplicaciones como la solucién de ecuaciones diferenciales y ecuaciones de
estado lineales de tiempo continuo con coeficientes constantes de una manera
simple al pasar del dominio del tiempo ¢ al dominio de una variable compleja
s. La siguiente expresiéon matematica define la transformada de Laplace:
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L{f(t)} = / f(®)e stdt = F(s), teR,seC (1.18)
o

El limite inferior tiene especial sentido para funciones discontinuas, dado
que en sistemas dindmicos se considera que f(t <0)=10. La integral
converge (condicion suficiente mas no necesaria) cuando f(t) es de orden
exponencial, es decir, se pueden encontrar valores de M y m de manera que
|f(t)| < Me™. Por ejemplo, f(t) = 1 siempre estd por debajo de cualquier
funcién exponencial con M > 1y su transformada de Laplace es:

__gt,00
st 1

£{1}:/0065tdt:€_—80 :o_(_g>:§
0

1.3.2  Transformadas bdsicas

Aplicando la definicion se pueden obtener las transformadas de funciones
como las dadas en la TABLA 1.1. Las otras transformadas se demuestran de
manera similar y se pueden consultar en [9].

TABLA 1.1. TRANSFORMADAS BASICAS DE LAPLACE

f(@) 1 " e senat cosat o(t—1)
1 | 1 a s
- n: _
F(s) S gt s—a 2 + a2 s2 + a2 e’

La funcién delta de Dirac tiene un espacial uso e interpretacion, dado que
es una funcion generalizada (un tipo mas general de funcién, dado que no se
acoge a la definicion convencional de funcién) que se define de la siguiente
manera:

S(t—1) = {063 b#T (1.19)

t=r
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/6(t—T>dt:1, /f(t)?i(t—T)dt:f(T)

La funcién se puede entender mejor a partir del pulso que se muestra en
la Fig. 1.5, donde la amplitud se hace cada vez mayor a medida que el ancho
disminuye; la dimensién de §(¢) es la inversa de la dimensién de ¢: [§(¢)] =
[t]7!. Dicha representacién es Gtil para la aproximaciéon cuando se usan
métodos numéricos, aunque pueden utilizarse otras aproximaciones [10],
como la distribuciéon gaussiana. En dichas expresiones es importante resaltar
la manera como la funcién utilizada depende del paso de la simulacién
numérica.

— A= limu(t)
At=0

At

Fig. 1.5 Interpretacion de la funcion delta de Dirac

Algunas propiedades de la funcién delta de Dirac, donde u(t) es la funcion
escalon unitario (discontinua), se dan a continuacion:

dug(t — )

S =0(t—=1), d(ct) ==5(t), 4(t) =d(~1)

Con base en las propiedades anteriores se tiene:

L{6(t—71)} / (t—7)estdt =e 57, L{i(t)} =
0
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1.3.3  Propiedades operacionales

Aunque puede calcularse la transformada de Laplace utilizando siempre la
definicién, la fortaleza de la aplicacién del método radica en la utilizacién de
las transformadas basicas de la TABLLA 1.1 y ciertas propiedades operacionales
que se muestran en la TABLA 1.2, las cuales se obtienen a partir de la
definicion.

Por ejemplo, para el célculo de la propiedad de traslacién temporal, donde
ug(t — 7) es la funcién escal6n unitario, se tiene:

L{f(t —T)u,(t—7)} ft—7)u,(t—7)estdt = | f(t—7)e stdt
N /

Cambiando de variables § =t — 7,df = dt, con § =0 cuando t =T, se
tiene:

L{f(t —T)ug(t —T) / Ye 0+ df = e / f(0)es%do
0 0

— F( ) —TS

Ver los ejercicios resueltos [4] 1.26 y los ejercicios propuestos [5] 1.6 en la
web del libro.
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TABLA 1.2. PROPIEDADES DE LA TRANSFORMADA DE LAPLACE

Propiedad f(t) F(s)
Linealidad afy(t) + bfy(t) aFy(s) + bFy(s)
Traslacién at

compleja e f(t) F(s —a)
Derivacién CcliTT{ s"F(s) — Z s FE1(07)

i—1

Traslacién

temporal o fE—7)u,(t—1) e ™ F(s)

real
¢
Convalucion | £,(t)« £,(8) = [ fy(t=)fy(r)dr Fi(3)Fy(s)
0
¢
Integracion /f(t)dt F(s)
J s
Valor inicial lim f(t) lim sF(s)
t—0* 5—00
Valor final flim f(t), si existe lin(l)sF(s)
Potenciacién " f(t) (—1)" d dF(s)
STL

1.3.4 Transformada inversa de Laplace

Para resolver ecuaciones diferenciales, integrales, difero-integrales o sistemas
de ecuaciones diferenciales lineales con la transformada de Laplace, la idea es
convertirlas a ecuaciones algebraicas en el espacio s utilizando las
transformadas bdsicas y las propiedades que convierten una funcién f(t) en
una funcién F(s), luego realizar las operaciones en el espacio s y de alli
regresar al espacio ¢ calculando la transformada inversa de Laplace
LY F(s)} = f(t), utilizando las mismas expresiones y propiedades bésicas
en sentido contrario, generalmente multiplicando o dividiendo por una
constante y aplicando el método de fracciones parciales. La idea se muestra
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en la Fig. 1.4. Las transformadas dadas en las tablas anteriores deben
entenderse en ambos sentidos, es decir:

ar-t e

1 1 2 1
TRV
24l T2 \eya) T2

LLa descomposicién en fracciones parciales da:

1 A Bs+C 1 s—1

(s +1)(s2 + 3) s+l 243 s+l 213

De esta manera se tiene:

1 1 1 s—1
s
(s+1)(s2+3) 4 {s+1 5243

1 . 1
=—|e ' —cosv3t +—=sen 3t>
] ( V3 7 V3

La transformada de Laplace normalmente es una fraccién estrictamente
propia, es decir:
lim F(s) =0
§—00
Si la transformada no es estrictamente propia, eso significa que en la
funcién temporal respectiva hay una funcién delta de Dirac. Por ejemplo:
5 s+1-—1 1 1

Y(s) = = — —
(5) s+1 s+1 s+1

En la seccion 1.4 se aplica la transformada de Laplace a la modelacion
matemadtica de sistemas dindmicos.

Ver los ejercicios resueltos [4] 1.3, 1.4y 1.5, y los ¢jercicios propuestos [5]
1.7 y 1.8 en la web del libro.
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1.4 Funcién de transferencia de tiempo continuo
1.4.1  Definicion

La funcién de transferencia para un sistema L'TT (lineal invariable en el
tiempo o lineal con coeficientes constantes) de tiempo continuo de una
entrada y una salida (SISO, Single Inpur Single Outpur) es la relacion entre la
transformada de Laplace de la salida y la transformada de Laplace de la
entrada suponiendo condiciones iniciales iguales a cero.
SR 2C70) [ 4O w20
Llu®)il, , o Uls)

Aunque las ecuaciones diferenciales, en general, pueden tener condiciones
iniciales arbitrarias, los sistemas dindmicos se estudian alrededor de puntos
de equilibrio, donde las condiciones iniciales iguales a cero son naturales. En
general, para una ecuacion diferencial, y(0) = y, v las derivadas son iguales a
cero (lo que corresponde a un punto de equilibrio), por lo que se puede tomar
y(0) = 0 y sumarle el valor de y, a la respuesta final. Lo anterior equivale a
una linealizacion, tal y como se explica en la seccion 3.4. Si no se pueden
asumir condiciones iniciales iguales a cero, entonces es necesario utilizar el
modelo en el espacio de estado (seccion 1.8) o dividir el problema en dos
partes: hallar la solucién con condiciones iniciales iguales a cero y luego
sumarle un término de correccién tal y como se muestra en las ecuaciones
(1.87) y (1.89). Por ejemplo, la funcién de transferencia de la siguiente
ecuacion diferencial puede obtenerse solo si se asumen condiciones iniciales
iguales a cero:

§+ a9 + axy = byu(t) + byu(t)
L} + a, L{y} + a L{y} = £{byu(t) + byu(t)}

s?Y(s) — sybd] — 0] + a [sY(s) — ykb]] + ayY(s)
= by[sU(s) — ud]] + b, U (s)
s2Y (s) + a;sY (s) + ayY (s) = bysU(s) + byU(s)
Y (s) bys + by

U(s) s2+a,s+a,
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La funcion de transferencia representa la relacion entre las transformadas
de la salida y la entrada, sin importar cual es la entrada, por lo que representa
el sistema mismo. Dicha expresion corresponde a su vez a la relacién de dos
polinomios, cada uno de los cuales da informacién directa sobre el sistema. El
polinomio denominador de la funcién de transferencia corresponde a la
ecuacion caracteristica (el lector debe desarrollar la capacidad de ver una
ecuacion diferencial ordinaria a partir de la funcién de transferencia).

La funciéon de transferencia puede ser una fraccidon propia (el grado del
numerador es igual al grado del numerador) o una fraccién estrictamente
propia (el grado del numerador es menor que el grado del denominador). Los
procesos continuos se modelan generalmente con fracciones estrictamente
propias, mientras que las fracciones propias son comunes en el disefio de
controladores; ambos casos corresponden a modelos causales.

La causalidad es una condicién que relaciona dos o mas acontecimientos
de modo que uno causa o produce el otro (efecto). Una fraccion impropia (el
grado del numerador es mayor que el grado del denominador) no tiene
significado fisico y corresponde a un modelo no causal. En el caso de tiempo
continuo, a una funcién de transferencia impropia le corresponde una
ecuacion diferencial que puede tener sentido, pero que presenta un
problema: una funcidon de transferencia impropia requiere de derivadores
(G(s) = s) para su implementacién, lo cual conlleva a que, ante una entrada
escalén u (t — 7), la respuesta temporal tenga una salida tipo funcién delta
de Dirac (seccidon 1.3) en el instante 7, y un valor infinito equivalente a un
comportamiento inestable (en términos de polos y ceros de la seccion 1.4.2,
equivale a tener los polos faltantes en el infinito en el semiplano derecho). En
definitiva, el problema del diferenciador se traduce en una implementacién
numérica de la derivada con diferencias finitas, por ejemplo, con los problemas
de causalidad explicados anteriormente. El siguiente es un ejemplo de una
funcién de transferencia impropia (donde surge un derivador) y su respectiva
ecuacion diferencial y ecuacién en diferencias no causal:

Y 2
(s) s s 14

G<S>:U(3)28+1: s+1

La respectiva ecuacion diferencial es:

y+ty=1u
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Discretizando se obtiene la siguiente ecuacion en diferencias no causal:

y(k+1) —y(k) _ulk+2) —2u(k+1) +u(k)
T B T2

S

+y(k)

Los siguientes son ejemplos de funciones de transferencia con su
respectiva ecuacion diferencial o en diferencias, donde se puede observar que
un polinomio de grado mayor o igual a uno aparece en el numerador cuando
hay derivadas de la variable de entrada:

Y(s) s+1
U(s) s(s2+3s+3)

G(s) = G4+ 35+3)=a+1

Una vez conocida la funcién de transferencia se puede encontrar la
respuesta temporal a cualquier tipo de entrada:

Y(s)

) =)

y(t) = LY (s)} = £ HG(s)U(s)}  (1.21)

En el caso de sistemas lineales invariables en el tiempo con m entradas y p
salidas (MIMO, Multiple Inpurs Multiple Outpurs, MISO, Multiple Inputs Single

Output, o SIMO, Single Inpur Multiple Outputs), la matriz de funciones de
transferencia es la matriz de (p X m) que retne el conjunto de todas las
funciones de transferencia G,;(s) = Y;(s)/U,(s) para cada par “salida
/entrada”, suponiendo que las demads entradas son iguales a cero:

Gii(s) - Gyp(s)
G(s) = : : (1.22)
Gpl(‘S) Gpm<8)
Donde
Y(s) = G(s)U(s),  Y(s)=[Yi(s) - Y, (s)]"
U(s) = [Uy(s) - Uyl(s)]"

Una caracteristica importante de muchos sistemas dindmicos es el retardo,
es decir, el tiempo que tarda en responder un sistema dindmico a un estimulo.
El retardo se incluye en los modelos de tiempo continuo como un nimero real
7. Las fuentes mds comunes de retardo son: el tiempo requerido en la
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medicion y el transporte, el tiempo exigido para el andlisis, el tiempo de
calculo y comunicacién (en sistemas digitales) y la compensacion cuando un
modelo se aproxima por otro de menor orden. Los problemas de los sistemas
con retardo incluyen el empeoramiento de la estabilidad y el andlisis y disefio
mads complicados. En el caso de tiempo continuo, debido al término no
polinomial e~ (en el caso discreto este no es un problema), es mas dificil
obtener un control satisfactorio debido a la reduccién de las ganancias de
control.

Para modelar el retardo en el caso continuo es importante tener en cuenta
las siguientes propiedades de la transformada de Laplace y transformada z:

L{f(t =T)u(t—7)} = e F(s)

De esta manera, la funcién de transferencia con retardo toma la siguiente
forma:

bos™ +bys™ 44 b, _1s+D,,
e
D(s) s"+asmt+-+a, s+a,

o (1.23)

Se puede aproximar el retardo continuo 7 utilizando series de potencia,
siendo la aproximacién de Padé la mejor opcion. Dicha aproximacion es tutil
en el andlisis y disefo de controladores, dado que el término de retardo se
transforma en una expresiéon racional de un mejor manejo algebraico. La
aproximacion de Padé de primer orden del retardo tiene la siguiente forma:

—— e /2 ~ 1—17s/2
e™/2 14 715/2

(1.24)

Ver los ¢jercicios propuestos [5] 1.13 y 1.14 en la web del libro.

1.4.2  Polos y ceros

La funcién de transferencia permite definir de manera clara informacién del
sistema dindmico, como las raices caracteristicas y el retardo. En el lenguaje
de la funcién de transferencia, a las raices del polinomio denominador (raices
caracteristicas) se les llama polos, siendo este el nombre mas general para
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dichos valores. El orden de un sistema es igual al nimero de polos. En otras
palabras, los polos p; son los valores que satisfacen los siguientes limites:

lim G(s) = oo (1.25)

S—=p;

Im(z)

Re(s)

(a) (b}

Fig. 1.6  Region de estabilidad de sistemas lineales de (a) tiempo continuo y (b) tiempo
discreto

Los polos determinan la estabilidad del sistema, de manera que para un
sistema de tiempo continuo la estabilidad se logra si todos los polos tienen
parte real negativa (estdn en el semiplano izquierdo), mientras que en el caso
discreto deben tener un médulo menor que uno (estin dentro del circulo
unitario), tal y como se muestra en la Fig. 1.6.

Lo anterior se observa al dar la solucién a partir de las raices caracteristicas:

A=a+if, y(t)=e(c;senft + cycosft), a<0

Entre mads lejos a la izquierda del eje imaginario estén los polos del sistema
de tiempo continuo mas rdpidamente desaparece el efecto de ese polo en la
respuesta temporal. El polo dominante en un sistema estable es el polo mas
cercano al eje imaginario y el que determina el decaimiento mas lento de la
respuesta temporal. Los polos insignificantes son los polos alejados del eje
imaginario entre 5 y 10 veces en relaciéon con el polo dominante, y cuyo
componente de la respuesta temporal decrece, y por lo tanto desaparece,
rapidamente. La Fig. 1.7 muestra el comportamiento estable e inestable no
oscilatorio y oscilatorio de acuerdo con la ubicacién de los polos en el plano
complejo de un sistema continuo, donde se observan las diferencias cuando
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los polos se alejan del eje imaginario (mayor estabilidad si estin en el
semiplano izquierdo) y del eje real (mayor frecuencia de las oscilaciones si
estan en el semiplano izquierdo). En general, como se vera en la seccién 3.5.6,
la velocidad de convergencia crece con la distancia entre el polo dominante y
el eje imaginario, mientras que la frecuencia de las oscilaciones crece con la
distancia entre el polo y el eje imaginario.

Im(s)

bl
K-

» Re(s)

Fig. 1.7 Respuesta temporal de un sistema continuo de acuerdo con la ubicacién de polos

De otro lado, a las raices del polinomio numerador de la funciéon de
transferencia se les llama ceros. LLos ceros surgen de una ecuacién diferencial
cuando se tienen derivadas de la variable de entrada y tienen una
interpretacién un poco mas compleja, la cual se dard a continuacién para el
caso continuo. Como dependen de la entrada, los ceros representan el
acoplamiento del sistema con el entorno. Para empezar, los ceros afectan la
respuesta temporal y frecuencial del sistema, logrando incluso una especie de
“adelantamiento” de la respuesta temporal ex sistemas discretos que conlleva a
que las condiciones iniciales iguales a cero sean menores que n. Formalmente,
los ceros z; satisfacen la siguiente expresion:
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lim G(s) =0 (1.26)

La expresion anterior se satisface en valores finitos (ceros finitos), pero

también en valores infinitos (ceros infinitos). En sistemas dindmicos el

nimero de ceros se considera igual al nimero de polos, por lo que se considera

que los ceros faltantes que estan en el infinito (real, imaginario o complejo).

Por defecto, se denominan ceros generalmente a los ceros finitos. El siguiente
ejemplo muestra la ubicacién de los polos y ceros:

(s +1)(s+2)e
Gls) = s2(s+3)(s2 + 25+ 2)

Polos = {0,0,—3,1 + 4,1 — i} Ceros (finitos) = {—1,—2}

En general, un cero finito de un sistema lineal invariable en el tiempo es
un valor z; que muestra cudndo la transmisién desde una entrada no nula a
una salida es bloqueada debido a efectos internos en el sistema. En un sistema
con una sola entrada y una salida si se aplica una entrada u = e*?, la salida
tenderd a cero (elimina la entrada). Para el caso de ceros complejos se
bloquean las entradas complejas {e*,e "} que corresponden a las entradas
reales {sent, cost}. Por ejemplo, la respuesta temporal del siguiente sistema
se muestra en la Fig. 1.8, donde se observa que la salida finalmente desaparece
si se aplica la entrada adecuada relacionada con el cero de la funciéon de
transferencia, incluso si la entrada crece indefinidamente:

s—1 . 1
G(s)—782+35+2, e, U(s)—s_l, u(07) =0
1
_ _ ot 2t : _
Y(S) —82+33+2’ y(t) e e ’ tligéy(t) 0

Hay un hecho importante a resaltar en el ejemplo anterior: si se resuelve la
ecuacion diferencial con la respectiva entrada se obtiene una solucion
diferente (y = 0). En efecto:
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0.25 T

0.2

0.15 |

0.1

0.05 f S

t (seg)

Fig. 1.8 Interpretacion de un cero de un modelo lineal con una entrada creciente e**

La razén del problema anterior es que se estan resolviendo dos problemas
diferentes: para la ecuacion diferencial u(0) = 1, mientras que en el caso de
la funcién de transferencia se tiene que u(0) = 0. Cuando se resuelve una
ecuacion diferencial con derivadas de la entrada por transformada de Laplace,
se debe especificar que u(0~) = 0 para obtener la primera solucién y(t) =
et —e 2, ou(0") = 1 para la segunda solucién (y = 0). Se invita al lector a
verificar lo dicho anteriormente [11] [12].

Asi como la ubicaciéon en el plano complejo de los polos tiene una
implicacién en el comportamiento del sistema, la ubicacién de los ceros
también juega un papel importante. Cuando un sistema lineal es estable y los
ceros estdn en el semiplano izquierdo para el caso continuo, o dentro del
circulo unitario para el caso discreto (el caso continuo y discreto se puede
unificar bajo el nombre de polos y ceros estables), se dice que se tiene un
sistema de fase minima. El retardo de tiempo continuo implica un
comportamiento de fase no minima, tal y como puede verse de la ecuacion
(1.24). Es importante resaltar que un sistema de fase minima es aquel que
tiene no solo ceros estables, sino también los polos estables; esta confusion se

debe a que normalmente se asume que el sistema es estable.

Un cero de fase minima al acercarse al eje imaginario tiende a aumentar el
sobreimpulso maximo, reducir el tiempo de pico y reducir el tiempo de
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crecimiento, tal y como se muestra a continuacién. Sea la siguiente funcion
de transferencia con un cero en z;:

G(s) = — (5 + 2,)Gs) = (Zi + 1) Gls) = Gls) + > C(s)

7 Zi

Con una entrada u = 1 la respuesta temporal es:
_ 1.
y(t) = §(0) + (0

(2

Step Response

14 T T T T T
VS G1,z1=-1e6
L/ ~=--G2,z2=-10 ||
12 / ~. | G3,23=-1
G4,24=-05
1 - .. e
/ =
y P
So08¢f ; L 1
2 [ Z
E " 7 A
I 7
fosr| y 1
14 /
|7 /
i /
0.4 _|‘-’ ; |
|‘|’ ‘f
i /
! / 4
02 Tf /
I.f /,
/,
0 . . . . ‘ .
0 1 2 3 4 5 6 7

Time (seconds)

Fig. 1.9 Efecto de la posicion de un cero de fase minima en la respuesta temporal

Por ejemplo, pueden verse en la Fig. 1.9 los efectos mencionados
anteriormente utilizando el siguiente c6digo de MATLAB para el cilculo de

la respuesta temporal con diferentes posiciones del cero z; y G(s) = 2/(s* +
35+ 2):

21 =-1e6; G1 = 2*tf([-1/21 1], [1 3 2]); 22 = -10; G2 = 2*tf([-1/z2 1], [1 3 2]);
23 =-1; G3 = 2*tf([-1/23 1], [1 3 2]); z4 = -0.5; G4 = 2*tf([-1/z4 1], [1 3 2])
step(G1,'k',G2,'b--',G3,'r-.",G4,'g'), legend({'G1, z1=-1e-6' 'G2, z2=-10"' 'G3, z3=-1''G4, z4=-0.5"})
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Step Response
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Fig. 1.10 Comportamiento tipico de algunos sistemas de fase no minima

Como se vera en la seccion 3.7, Fig. 3.31, el nombre de fase no minima
proviene del hecho de que, si se traza la respuesta frecuencial de sistemas que
tienen una funcion de transferencia con una forma semejante que se
diferencia solo por el signo de los polos y ceros, el cambio de fase serd minimo
solo para aquella funcién de transferencia con todos sus polos y ceros estables.
Algo parecido aparece muchas veces (no siempre) en la respuesta temporal,
donde en un sistema estable de fase no minima la respuesta puede tener una
variacion total mayor que la de un sistema estable de fase minima equivalente
(mismos polos y ceros de diferente signo), con un comportamiento extrafio
ante una entrada constante positiva, cuando, en lugar de subir, la respuesta
temporal desciende para luego empezar a subir de nuevo (ver Fig. 1.10).

Algunos casos practicos de un comportamiento de fase no minima son: (1)
Péndulo invertido: cuando se quiere mover el péndulo hacia la izquierda,
primero debe moverse la base hacia la derecha, el péndulo se inclinard hacia
la izquierda y luego hay que mover la base ripidamente hacia la izquierda y
sobrepasar el centro de gravedad para que se estabilice en la nueva posicion.
(2) Calentamiento de una casa con horno de carbén: si la temperatura es
demasiado baja, se agrega mas carbon para calentar el horno, pero al principio
se obtiene realmente lo contrario, pues la temperatura se reduce debido a que
el carbon agregado atenta el fuego. Luego, el fuego obtiene mas potenciay la
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temperatura comienza a subir. (3) La altitud de un avién: cuando un piloto
quiere ganar altura, primero tiene que girar hacia arriba la aeronave para
aumentar el dngulo de ataque, pero se obtiene una fuerza hacia abajo que baja
el centro de gravedad antes de que el aumento de la fuerza hacia arriba en las
alas levante el avién, a partir del aumento del dngulo de ataque. (4) La
digestién y la mayoria de los procesos metabdlicos: para obtener calorias de los
alimentos, el cuerpo debe gastar calorias para descomponer los alimentos
(masticar, digerir, etc.), pero a largo plazo gana mas energia de la comida que
la que se gastd. (5) La mayoria de las practicas médicas: muchas curas
requieren la ingestiéon de medicamentos téxicos que inicialmente hacen que
el paciente se sienta mucho peor, pero luego lo mejoran. (6) Negocios/vida:
para obtener ganancias/éxito, lo que significa bienestar y tranquilidad, se
necesita un periodo inicial de arduo trabajo y problemas. (7) Ejercicio fisico:
por lo general, el ejercicio al inicio hace sentir peor a la persona (menos
energia), pero a la larga la hace sentir mejor. (8) Contratacién de un nuevo
empleado: el objetivo de contratar a alguien es aumentar la productividad,
pero generalmente la productividad en un grupo con un nuevo empleado
inicialmente disminuye debido a la capacitacién requerida.

En el caso de sistemas con multiples entradas y salidas la interpretacion de
los ceros es mas compleja, dado que ademas del valor del cero es necesario
incluir un vector p, [13] [14]. En sistemas MIMO existen diferentes tipos
de ceros, pero los mas usuales (que se ajustan a la definicién anterior) son los
llamados ceros de transmisién cuando se tiene una realizacion minima
(después de la cancelacion de polos y ceros) y los ceros invariantes de una
realizacion no minima. En la secciéon 1.8.8 se explica como calcular los polos y
ceros a partir de la ecuacion de estado. Para el caso MIMO, en este libro se
utiliza MATLAB para su cdlculo, pero es importante comprender su
significado. Si el lector quiere profundizar, en [14] estd la solucidn analitica a
los problemas planteados a continuacion.

La realizacién minima (o de minima dimensién) de una ecuacién de estado
o funcidn de transferencia es la representacion que queda luego de reducir el
orden por la cancelaciéon de polos y ceros (eliminaciéon de los modos no
controlables y no observables). El orden del modelo resultante es igual al
grado de McMillan. En el caso de una funcién de transferencia, a la realizacion
minima también se le denomina fraccién coprima. En la seccion 1.4.3 se tratan
los métodos de reduccion del orden. Una ecuacién de estado tiene una
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realizacion minima si es completamente controlable y observable (seccion
4.10).

En general, y por definicién, los polos de una realizacién minima de una
matriz de funciones de transferencia G(s) se obtienen del minimo comin
denominador de todos los menores no nulos; los ceros se obtienen del maximo
comun divisor de todos los numeradores de orden igual al rango (nimero de
filas o columnas linealmente independientes) de G(s), donde el polinomio
de los polos debe estar en el denominador de cada menor. Se puede ver que
es mds probable que una matriz de funciones de transferencia rectangular
tenga menos ceros que una cuadrada. El cdlculo de los polos y ceros de
sistemas MIMO no es un problema trivial y no se obtienen, generalmente, de
la matriz de funciones de transferencia.

Ver los gjercicios resueltos [4] 1.12 y los ejercicios propuestos [5] 1.13 en
la web del libro.

1.4.3 Reduccion del orden de la funcion de transferencia

El orden de un modelo matematico es una abstraccién matemadtica adecuada
para la representacion de una realidad fisica, generalmente relacionada con los
elementos almacenadores de energia (ver la seccién 1.8). Sin embargo, puede
ocurrir que haya variables linealmente dependientes o que ciertos valores de
los parimetros lleven a que una representaciéon de menor orden (realizacion
minima) sea suficiente para la modelacién del sistema. Por lo tanto, es
importante conocer los métodos que permiten la reduccién del orden, algunos
de los cuales (los mds intuitivos) se presentan a continuacion para el caso
lineal invariable en el tiempo: cancelaciéon de polos y ceros de fase minima,
eliminacién de polos insignificantes y métodos formales con MATLAB. Otra
forma consiste en aplicar métodos de identificacién de sistemas (capitulo 5)
para, dado un modelo determinado, obtener datos de una respuesta temporal
con una entrada determinada y de esos datos calcular un modelo adecuado de
menor orden. Los dos primeros métodos se basan en la idea bésica de quitar
los polos y compensar con una ganancia, de manera que se conserve el valor
final ante una entrada escal6n:

1
Y., = limy(t) = limosY(s) = limsG(s)— = G(0)
s—

t—o00 s—0 S

Para el caso de cancelacion de polos y ceros cercanos se tiene:
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Aa

s+ a

G(s) = é(s)m _ é(s)w

s+ aq s+a

— G(s) [1 n } ~ kG(s)

La constante de compensacién k se obtiene a partir del término que se

elimina:
= G(0
G(0) = kG(0), k=20
G(0)

De la expresion anterior se observa que se puede cancelar un polo y un cero
cuando a > 0, es decir, el polo estd en el semiplano izquierdo y la respuesta
e~ desaparece con el tiempo (desaparece mds ridpidamente entre m4s
pequeno sea Aa). Para obtener el mismo valor final, se realiza una
compensacion con un valor k, igual a los términos que se quitan evaluados en
cero.

Step Response Impulse Response
T T T T

P

L L L
o 1 2 4 5 g 0 1 2 5 i T

3 3 4
Time (seconds) Time (seconds)

Fig. 1.11 Efecto en la respuesta temporal de la reduccion del orden por cancelacion de
polos y ceros

Por ejemplo:

(s +FT)(s+ 2)(3+3) G(s) ~ k(s +2)
(sA+T)(5+28)(s?2 +25+2)° s24+2s+2
_G0) (s+11)(s+3)  (L.1)(B3)
b= G) (s+1)(s+28)] _, (1)(28) 11786

G(s) =
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o 1.1786(s + 2)
G(s) ~ s2 425+ 2

En la Fig. 1.11 se comparan las respuestas temporales a un escalén y a un
impulso de las dos funciones de transferencia utilizando MATLAB:

G = zpk([-1.1, -2, -3], [-1+i, -1-i,-1, -2.8], 1); Gred = zpk([-2], [-1+, -1-i], 1.1786);
step(G, Gred), legend, impulse(G, Gred), legend

De manera similar, pueden eliminarse polos insignificantes (seccion 1.4.2),
es decir, los que se encuentren muy a la izquierda en el semiplano izquierdo
y cuya respuesta temporal a un escaléon desaparece rdpidamente, y
compensarlos con un valor k. Por ejemplo, en la siguiente funcién de
transferencia el polo dominante es (-1) y el polo insignificante es (-10), el cual
estd a 10 veces del polo dominante:

5 5k -
Gls) = (s+1)(s+2)(s+10] (s+1)(s+2) G(s)
p=CGO_ Ll G0
G(0) s+10l,_, 10 (s+1)(s+2)
Greg 042 l.?\l Grad|

4 5 5 7 0 P 4 [ B 10 12
Time (seconds) Time {seconds)

Fig. 1.12 Efecto en la respuesta temporal de la reduccion del orden por eliminacion de
polos insignificantes
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En la Fig. 1.12 se comparan las respuestas temporales a un escaléon y a un
impulso de las dos funciones de transferencia. El respective coédigo de

MATLAB es:
G =1zpk([ ], [-1, -2, -10], 5); Gred = zpk([ ], [-1, -2], 0.5); step(G, Gred), legend

En cuanto a los métodos formales, la funcién balred de MATLAB
implementa un método de reduccion que proporciona estabilidad y un
estricto control de errores. Para el primer ejemplo, los resultados son los
siguientes, con un ajuste perfecto en los graficos:

G =zpk([-1.1, -2, -3], [-1+i, -1-i, -1, -2.8], 1); Gred = balred(G, 2); % Reduccién a un modelo de orden

2
step(G, Gred), legend

Gred =

0.0032813 (s+2.571) (s+295.5)

(572 + 2.123s + 2.115)

Ver los ejercicios resueltos [4] 1.14 y los ejercicios propuestos [5] 1.17 en
la web del libro.

1.5 Ecuaciones en diferencias de sistemas dinamicos
lineales de tiempo discreto

1.5.1 Conceptos

Una ecuacion en diferencias es una ecuaciéon que contiene diferencias finitas
hacia delante o hacia atrdas. Una ecuacién en diferencias se puede resolver
analiticamente (seccién 1.5.4), de una manera similar a la solucién de las
ecuaciones diferenciales, pero lo atil es que se pueden resolver
iterativamente. Las ecuaciones diferenciales y las ecuaciones de estado de
tiempo continuo se llevan a ecuaciones en diferencias para su solucién
numérica en un computador digital.

Utilizando la definicién de derivada y su aproximacion puede obtenerse la
diferencia finita hacia delante de primer orden, las cuales corresponden al
método numérico de Euler (seccién 2.7), donde se toma el paso fijo del
método numérico igual al periodo de muestreo 7, (secciéon 1.5.2), y los
instantes de tiempo son discretos e iguales a t = kT:
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dy _ | y(t+ At) —y(t)  y((k+1DT,) —y(kT,)

= lm ~

a At—0 At T

S

= Ay(kT,) (1.27)

Donde

y((k: + 1)TS) — y(kT,)
T

s

Ay(kT,) =

De igual manera, la diferencia finita hacia atris tiene la siguiente forma:

dy . y@t) —yt =AY ykT,) —y((k—1DT})
TR vE—— - = Vy(kT,) (1.28)

)

Donde

KT,) —y((k = DT)
T

s

vy(kt,) = ¥

Las diferencias finitas de orden 2 y superiores se obtienen a partir de las
expresiones anteriores. Por ejemplo, la diferencia finita hacia delante de
segundo orden es:

Ay((k+1)T,) — Ay(kT

s

y((k+2)T,) —2y((k + DT,) + y(kT,)
T2

APy(kT,) = (1.29)

Si en una ecuacion diferencial se reemplaza cada derivada de orden n por
una diferencia finita de orden n, entonces se obtienen ecuaciones en
diferencias hacia adelante y hacia atrds como las que se muestran a
continuacién, donde, ademads, se omite 1, y s¢ deja de manera implicita. Es
importante anotar que, aunque en dichas expresiones no aparece
explicitamente el simbolo A o V, la ecuacion se sigue llamando una ecuacion
en diferencias y el orden del término y(k + i) es igual a i, y el orden de la
ecuacion estd dado por el mayor valor de .

LLa ecuacién en diferencias finitas hacia delante de orden n con coeficientes
constantes, y con condiciones iniciales, es:
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{y(k+n) +aylk+n—1)+-+a,y(k) = u(k) (1.30)

Y(0) = Y1, ¥(1) = Yoo, y(n — 1) = yo,,

La ecuacion en diferencias finitas hacia atrds de orden n con coeficientes
constantes, y con condiciones iniciales, es:

{?J(k) tayk— 1)t aqyk—nt+l)+aylkh—n)=uk)

y(0) = Y1, ¥(1) = Yoo, y(n — 1) = yo,,

Las condiciones iniciales se obtienen a partir de las diferencias finitas. Por
ejemplo:

i)~ PEEDZID) ) LYW ZVO) ) o o) 4 1300)

Aunque se puede aproximar una ecuacion diferencial de cualquier orden
con diferencias finitas del mismo orden, una solucién mas adecuada consiste
en convertir la ecuacion diferencial de orden n en n ecuaciones diferenciales
de primer orden, tal y como se explica en la seccién 1.8.2.

Ver los ¢jercicios resueltos [4] 1.7 y los ejercicios propuestos [5] 1.3 en la
web del libro.

1.5.2 Discretizacion o digitalizacion de seiales

La discretizacién o digitalizacion es el proceso de conversién de una senal o
modelo matematico de tiempo continuo en una sefal o modelo matematico
de tiempo discreto, lo cual requiere de una operacion de muestreo (toma de
muestras) con un periodo de muestreo 7, (o frecuencia de muestreo w, =
2n/T, o f, = 1/T,). El muestreo puede ser regular (a intervalos iguales) o
irregular (a intervalos diferentes). En el caso de un sistema con multiples
senales, el muestreo puede ser monofrecuencia (la misma frecuencia de
muestreo para cada una las sefiales) o multifrecuencia (diferentes frecuencias
de muestreo para cada una las senales). Generalmente, el periodo de muestreo
se da con una sola cifra significativa.

Con un periodo de muestreo pequeno se obtiene mas informacién del
sistema, la respuesta temporal es mds suave y hay una respuesta mas rapida a
las perturbaciones, pero el costo computacional es mayor y los polos del
modelo lineal de tiempo discreto tienden a ubicarse en el circulo unitario,
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dado que z = e%+*, con lo cual la estabilidad relativa disminuye. Con un

periodo de muestreo grande se pierde informacién y se presentan problemas
indeseados como el enmascaramiento de sefales o las oscilaciones ocultas. El
mejor periodo de muestreo es el mayor periodo que da las prestaciones
deseadas. Por lo tanto, se debe seleccionar adecuadamente el periodo de
muestreo utilizando, como minimo, el teorema de muestreo de Nyquist-
Shannon, el cual establece que la frecuencia de muestreo w, de una sefial
continua debe ser mayor que dos veces la frecuencia maxima de la sefial wy
(segln la descomposiciéon dada por el transformada de Fourier descrita en la
seccion 3.7.4), conocida como ancho de banda, para que la sefial continua se
pueda reconstruir a partir de sus muestras:

w, > 2wp (1.32)

La explicacion de la expresion anterior se puede de ver a partir del
fenémeno de doblado del espectro de las senales. El concepto de espectro se
explica en la seccion 3.7.4. El doblado del espectro (fo/ding) es el fenémeno
en el cual al muestrear una sefial de tiempo de banda limitada el espectro se
repite con la misma forma y con un distanciamiento igual a la frecuencia de
muestreo w, (Fig. 1.13). Por lo tanto, se debe muestrear de manera que no se
solapen las repeticiones del espectro de la senal discreta.
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Fig. 1.13 Fendmenos de doblado y solapamiento del espectro

El fenémeno de solapamiento del espectro genera un fenémeno de
enmascaramiento de la senal. El enmascaramiento de sefales (a@/asing) es el
fenémeno en el cual una senal discreta aparece de una forma diferente a la
sefal continua. Por ejemplo, al observar las aspas de un ventilador o llantas de
un vehiculo que se mueven ripidamente, estas aparentemente se mueven en
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sentido contrario, lo cual se debe a que la frecuencia del procesamiento del
cerebro no es la adecuada para observar ese movimiento. Si se tiene una seial
con una frecuencia w y se muestrea de manera incorrecta con una frecuencia
w,, se generan sefnales de frecuencias menores w; (mdscaras), tal y como se
muestra en la Fig. 1.14. Las frecuencias de las mdscaras son: w; =
lw+ kw,|, k=1,2,3,...

=10 rad/seg —*%117) It O I p l
0.6 1
04k imill
o, =T, ]; =2 — a2 ,.‘-"‘ \“‘ A
7 \ /
o =|otko| !
N /
o, =10+ kx !
S |
k =2 \ H/
e , N A
@, = 0.5752 rad/seg . , .
2 4 8 10 12

t (seq)

Fig. 1.14 Enmascaramiento (aliasing) de sefiales

Las senales en general no tienen banda limitada, por lo que para evitar el
solapamiento es necesario eliminar, en realidad reducir, con un filtro
antisolapamiento (awntialiasing) tipo pasabajas (seccion 3.7.5) las senales
mayores a la frecuencia para la cual se obtuvo la frecuencia de muestreo (la
llamada frecuencia de Nyquist):

Wy = %(rad/s), fn = %(Hz) (1.33)

Es decir, si se conoce el ancho de banda de una sefal, entonces se puede
aplicar el teorema, pero si se especifica la frecuencia de muestreo, entonces
se debe asegurar, por medio de un filtro pasabajas, que no haya en la sefal
frecuencias mayores a la frecuencia de Nyquist.

Mis alld de teorema de muestreo, existe la regla heuristica (1.34) permite
una mejor seleccién a partir del tiempo de crecimiento 7, de la respuesta
temporal (ver seccién 1.5.2), siendo 7,./10 el valor por defecto. Si el sistema
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es inestable se debe seleccionar el periodo de muestreo a partir de la respuesta
deseada en lazo cerrado.

T T
—< T, <— (1.34)

Adicional a las condiciones anteriores, si se quiere conservar la
controlabilidad y observabilidad con el muestreo se deben evitar periodos de
muestreo cercanos a aquellos que violan la condicién de regularidad del
muestreo (secciéon 4.10.3).

Los procesos de muestreo y retencién se implementan respectivamente
por medio de dispositivos electronicos llamados convertidor andlogo/digital
(ADC) y un convertidor digital/anidlogo (DAC), los cuales convierten una
sefial continua (generalmente voltaje o corriente) en una sefal discreta
(binaria) o viceversa. En un ADC la senal continua se mantiene constante
entre dos instantes de muestreo, lo cual corresponde a una DAC con un
retenedor de orden cero.

ol

Fig. 1.15 Representacién de la cuantificacion de sefiales

La cuantificacién es el proceso de representacion de una variable continua
por medio de un conjunto finito de valores discretos (valores cuantificados) y
depende del nimero de bits del convertidor, tal y como se muestra en la Fig.
1.15. El error de cuantificacién es el error (de truncamiento o redondeo) al
aproximar un valor analégico a un nivel digital y que puede verse como un
ruido llamado ruido de cuantificacion. El nivel de cuantificacion es el intervalo
entre dos puntos adyacentes de decisiéon (maximo error de cuantificacion).
De esta manera, debido a un error de cuantificacidon una variable anal6gica con
un valor dado conocido no tendrd el mismo valor exacto al discretizar y pasar
a un sistema digital.
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Una incorrecta seleccion del periodo de muestreo también puede llevar a
un fenémeno de oscilaciones ocultas (izzersample ripple, rizado intermuestreo)
entre instantes de muestreo y que no se observan en la seial discreta, pero si
en la senal continua. La Fig. 1.16 explica el fendmeno.
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Fig. 1.16 Oscilaciones ocultas que aparecen debido a una seleccion incorrecta del periodo
de muestreo

En sistemas de control en lazo cerrado pueden aparecer oscilaciones
ocultas por la pérdida de observabilidad al discretizar el modelo continuo con
un periodo de muestreo incorrecto (ver la condiciéon de regularidad del
muestreo en la seccidon 4.10 sobre observabilidad). Dichas oscilaciones se
pueden detectar fisicamente en esos casos por un sonido parecido a un timbre
en el actuador, o en simulacién si se trabaja con la planta continua, la cual
exige un paso del método numérico menor que el periodo de muestreo.

1.5.3 Solucion iterativa

Una vez se tiene la ecuaciéon en diferencias, esta puede resolverse
iterativamente. La solucién numérica iterativa o recursiva de una ecuacion en
diferencias implica el conocimiento de las condiciones iniciales y el despeje
del término de mayor orden, luego se reemplazan las condiciones iniciales y
se va hallando de manera progresiva los valores de la solucion en los siguientes
instantes de muestreo, por lo que en dicha soluciéon solo es posible hallar la
solucién en el instante k si se conocen todos los valores de la solucion hasta el
instante (k — 1). Si se convierte una ecuacién en diferencias hacia delante en

46



1. Fundamentos matemadticos de los sistemas dindmicos

una ecuacion en diferencias hacia atras, o viceversa, /las condiciones iniciales no
cambian. La solucién iterativa se puede aplicar a ecuaciones en diferencias
lineales y no lineales. De hecho, la aplicacion de un método numérico a la
soluciéon de una ecuaciéon diferencial (simulaciéon, Capitulo 2) implica su
transformacién a una ecuaciéon en diferencias [15].

Por ejemplo, sea la siguiente ecuacién en diferencias hacia delante de
orden 2:

y(k+2) 4+ 0.5y(k+1) —0.2y(k) =1, y(0)=1,5(1)=0
La solucién iterativa, despejando el término de mayor orden, es:
y(k+2)=—-0.5y(k+1)+0.2y(k)+1
Tomando k = 0y utilizando las condiciones iniciales:
y(2) = —0.5y(1) + 0.2y(0) + 1 = 1.2, y(2) =1.2
Tomando k£ = 1 y utilizando las soluciones anteriores:
y(3) = —0.5y(2) + 0.2y(1) + 1 = 0.4, y(3) =04

El proceso se puede continuar para encontrar los valores siguientes. Es
importante senalar que no es posible calcular el valor en el instante k sin
encontrar todos los valores anteriores. Por otro lado, no es necesario
especificar el periodo de muestreo o paso, dado que una vez se conozca solo
se requiere escalar correctamente los valores de la variable independiente: se
cambia por y(kT),).

Ver los ejercicios resueltos [4] 1.6 y los ejercicios propuestos [5] 1.5 en la
web del libro.

1.5.4 Solucion analitica

La solucién analitica de las ecuaciones en diferencias lineales con coeficientes
constantes (seccidon 2.7) es similar a la solucién de las ecuaciones diferenciales
ordinarias lineales con coeficientes constantes (seccién 1.2): (1) solucién de
la ecuacion homogénea por medio del planteamiento de la ecuacién
caracteristica, calculo de las raices caracteristicas y obtencién de las
respectivas funciones; (2) cdlculo de una solucién particular de la ecuaciéon no
homogénea por el método de coeficientes indeterminados o el método de
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variacion de las constantes; (3) obtencién de la solucién general como la suma
de las dos soluciones anteriores; (4) obtencién de la solucién particular a partir
de las condiciones iniciales (solucidon del problema de valor inicial).

La solucién analitica permite comprender mejor el comportamiento de los
sistemas de tiempo discreto y, en particular, de su estabilidad: un sistema
lineal de tiempo discreto es estable si el médulo de todas sus raices
caracteristicas es menor o igual que uno; la estabilidad es asintética si el
moédulo es estrictamente menor que uno, es decir, se encuentran dentro de un
circulo unitario.

Sea la siguiente ecuacion en diferencias hacia delante lineal no homogénea
con coeficientes constantes de orden n:

{y(k+n) +aylk+n—1)+-+a,y(k) = u(k) (1.35)

y(0> = y017y(1> = Yoz2>"""> y(n - 1) = Yon
Se resuelve inicialmente la ecuacion homogénea:
y(k+n) +ay(k+n—1)+-+a,y(k) =0

La solucién se plantea de la siguiente manera: y(k) = A\* (en el caso
continuo la solucién de buscaba de la forma y = e**), lo cual da la siguiente
ecuacion caracteristica:

)\n+a1)\ﬂ*1+...+an_1)\+an =0 (1.36)

Las raices caracteristicas pueden ser reales o complejas, simples o
multiples, y se pueden representar de manera general de la siguiente manera
(debe trabajarse con la representacion polar):

A=a+i =re"¥

Tm(\) (1.37)
Re()\)

r=+/Re2(\) +Im2()\), ¢ = arctan

A una raiz caracteristica de multiplicidad m de la forma anterior le
corresponde la siguiente solucion:

o (c,cospk + cosenpk) + k(cgcospk + ¢ senpk) + -+

k) —
A k™1 (ey,, 1cospk + ¢y, senpk)

(1.38)
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En el caso particular de raices reales que no se repiten {\;, Ay, -, A, } se
tiene:

U (k) = A7 + A5 + 4 ¢, Ap
Si una raiz caracteristica es compleja, pero no se repite se tiene:
yy, (k) = r¥(c,cospk + cosenpk)
La solucién para el caso cuando una raiz real A se repite m veces es:
yn(k) = N(ey + ok + -+ ¢, k™)

De las expresiones anteriores se puede deducir que el sistema es estable si
las raices caracteristicas estdn dentro del circulo unitario, es decir, |A| < 1.

La forma de la solucién de la ecuacidon en diferencias en forma de una
potencia de A\ muestra que 7o interesan las raices iguales a cero. Por lo tanto, la
ecuacion debe tener siempre el término y(k) vy, si no existe, entonces se
puede hacer un cambio de variables, quitar condiciones iniciales y reescribir
la ecuacién. Por ejemplo, la siguiente ecuacidn se puede simplificar haciendo
el cambio de variables k — k — 2 (el tiempo 0 equivale a k = 2) y se eliminan
las primeras dos condiciones iniciales que no las puede satisfacer la ecuacidn,
donde u (k — n) es la funcién escal6n unitario, y las dos primeras condiciones
iniciales pasan a ser valores fijos (el resultado coincide con el de Ia
transformada z de la seccién 1.6):

y(k+3) +ay(k+2) =u(k),  y(0) =yo1,y(1) = Yoz ¥(2) = Yos
Cambio de variable:
k—k—2
Se tiene:
y(k+1) + ay(k) = u(k — 2)u,(k = 2),  y(0) = yo3

Cuando el término independiente u(k) tiene la siguiente forma puede
aplicarse el método de coeficientes indeterminados, donde A,,, B, , P, y Q,,
son polinomios del grado mayor igual a n, los dos primeros con coeficientes
conocidos y los dos Gltimos con coeficientes indeterminados:
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u(k) = NF[A, (k)senpk + B, (k)cospk] (1.39)

El método de coeficientes indeterminados para un término independiente
de la forma anterior propone hallar la solucién particular de la ecuacién no
homogénea de la forma, donde m es el nimero de veces que hay que
multiplicar el término por k para que la solucién resultante no esté dentro de
la solucién complementaria:

Yo (k) = KNP, (k)sengk + Q,, (k)cospk] (1.40)

Ver los ejercicios resueltos [4] 1.8 y 1.9 y los ejercicios propuestos [5] 1.4
en la web del libro.

1.6 Transformada z
1.6.1  Definicion

La transformada z es el equivalente para sistemas de tiempo discreto de la
transformada de Laplace (seccién 1.3) y, en general, la idea es la misma de la
transformada de Laplace: convertir una ecuacion o sistema de ecuaciones en
diferencias lineales a una ecuacién algebraica en el espacio complejo z
utilizando unas expresiones y propiedades basicas que convierten una funcion
f(k) en una funcién F(z), realizar las operaciones en el espacio z v,
finalmente, regresar al espacio k utilizando las mismas expresiones y
propiedades bdsicas en sentido contrario, apoyado por el método de fracciones
parciales. L transformada z permite, de esta manera, una operaciéon mads
simple con sistemas dindmicos lineales de tiempo discreto. La transformada
z fue introducida con ese nombre por Ragazzini y Zadeh en 1952. La
transformada z modificada fue presentada por E. L. Jury en 1958.

La transformada z puede calcularse directamente de la transformada de
Laplace partiendo de la siguiente representacion continua por partes y*(t) de
una secuencia de variables discretas, donde §(t — kT,) es la funcién delta de
Kronecker y T, es el periodo de muestreo (ver secciéon 1.5.2 sobre su
definicién y correcta seleccion):

yi(t) =Y y(kT,)8(t — kT,) (1.41)

k=0
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La funcién delta de Kronecker es una funciéon en el dominio discreto
definida de la siguiente manera:

1, k=
B(k—n)ESkn:{o’ k;#Z konezt (1.42)

La transformada de Laplace de la senal anterior tiene la siguiente forma:
Y*(s) = L{y* (1)} = Y y(kT,) £{6(t — kT,)} =) y(kT,)e o
k=0 k=0

Se realiza el siguiente cambio de variable (esta expresion es fundamental,
dado que define la relacién entre el plano continuo y el discreto):
1

— T =—1 1.4
z=e3° s Tnz (1.43)

s

Lo anterior conlleva a la siguiente definicion de la transformada z
(unilateral), donde se omite el periodo de muestreo 7',:

Y(2) = 2y} = 3 y(h) (1.44)

Por ser la transformada z una serie infinita, al calcular la transformada de
una funcién determinada es necesario especificar la region de convergencia
(region of convergence, ROC). Sin embargo, para la solucién de ecuaciones en
diferencias esta informaciéon puede omitirse y manejarse implicitamente, es
decir, al aplicar la transformada z se admite que hay una ROC y al aplicar la
transformada inversa se entiende que se aplica bajo la suposicion de esa ROC.

Igualmente, la transformada z se aplica en realidad a una secuencia de
nameros {y(0),y(1),---}, por lo que ¢/ periodo de muestreo se puede omitir y
asumirlo de manera implicita. Por ejemplo, si dos sefnales tienen diferente
periodo de muestreo, pero su secuencia de nimeros es la misma, entonces sus
transformadas z son iguales, por lo que la funcidon temporal discreta es tnica,
aunque la funcién continua no lo es y queda clara una vez se conoce el periodo
de muestreo:

z
z— 2

2{2' g1 = 2{V2) Hr o = 2{2"} =
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Por la raz6n anterior, no es necesario especificar el periodo de muestreo en
las formulas de la transformada z y se puede trabajar siempre con un 7}, = 1,
pero si es necesario especificar el periodo de muestreo si se discretiza un
modelo continuo o si se quiere dar la respuesta temporal en unidad de tiempo
y no en instantes de muestreo.

Dada la definicién (1.44) de transformada z, se puede ver que el valor
temporal de la funcién en cada instante de muestreo puede obtenerse
realizando una division larga entre los polinomios numerador y denominador:

N(z)
D(z)

Y(z) = =y(0) +y(D)z" +y(2)272 + -+ y(i)z + -

Por ejemplo, para la siguiente funcidén se muestra la divisiéon larga y los
valores de la secuencia de la transformada z inversa:

0.3(2 — 2
Y(z) = (z—2)
2(z4+0.7)(z + 0.2)
0.3z—0.6 2 +0.92° +0.142
~0.32—0.27—0.04277 [0.8:2£ 0.8 +[0.74,~ + .-
~0.87 - 0.042

0.87+0.783271 +0.1218;27¢
0.741z7* +0.1218z7°

Comparando los coeficientes dentro de cada recuadro con la definicién de
transformada z se tiene:

y(0) = 0,y(1) = 0,y(2) = 0.3,y(3) = —0.87, y(4) = 0.741, ...

En este caso, se puede observar que el nimero de valores iguales a cero al
inicio de la serie es igual a la diferencia entre el grado del denominador y el
grado del numerador de la transformada z (a esa diferencia se le llama el orden
relativo).

La transformada z se aplica a sefales continuas sin retardo o con un retardo
que es mdltiplo del periodo de muestreo (7 = d - T,) y que permite aplicar la
propiedad de traslacion. Sin embargo, si la sefial tiene un retardo diferente es
necesario aplicar la llamada transformada z modificada [16] [17]. Las
funciones de MATLAB utilizan la transformada z modificada.
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1.6.2  Transformadas bdsicas

Aplicando la definiciéon anterior se llega a las transformadas que se dan en la
TABLA 1.3 de algunas funciones bésicas. En esta se omiten la regién de
convergencia y el periodo de muestreo, puesto que no son necesarios para los
calculos que se requieren en este libro.

TABLA 1.3. TRANSFORMADAS BASICAS Z

f(k) 1 k a® sen ak cos ak d(k—mn)

z z z zsena z(z —cosa)
F(z) 2—1 (z—1)2

z—a | 22—2zcosa+1| 22 _9zcosa+1

Es importante observar que la transformada z es una funcién propia o
estrictamente propia y contiene siempre 2z en el numerador, exceptuando la
transformada z de la funcién delta. Si una transformada z no tiene z en el
numerador eso indica que hay un retardo o una funcién delta de Kronecker:

1 z

Vo) = o=y ¢ YR =uke)

Y(z) = 1 :z—(z—l)_ z

po— po —2_1—1 < ylk)=1-45(k)

En general, una transformada z se puede expresar usando la funcién delta
de Kronecker o la funcién escal6n unitario:

u(k—1)=1-68(k), d(k)=1—u,(k—1)

u,(k—n) = —Zé(k—i) (1.45)

1.6.3  Propiedades operacionales

Las propiedades de la transformada z se dan en la TABLA 1.4. Utilizando las
propiedades de la transformada z es posible expresar una transformada z como
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una ecuaciéon en diferencias hacia atrds y de alli encontrar los valores
temporales por medio de su solucién iterativa:

N(z)  byz™+byz"t+ - 4b,
D(z) zt+a 2"+ +a,

Y(z) =

by2™ " 4 by e by
l4+az7t+-+a,z"

Y(2)=

Aplicando la transformada inversa z:

y(k) + ary(k —1) + - a,y(k —n) = byd(k +m —n) + -+ b,,6(k —n)

TABLA 1.4. PROPIEDADES DE LA TRANSFORMADA Z

Propiedad f(k) F(z)
Linealidad af, (k) +bfy(k) aF(z) + bF,(2)
Traslacion
real hacia flk—=n)=f(k—n)u,(k—n) 2 "F(2)
atrds
Traslacion n—1
real hacia f(k+n) 2" [F(z) — Z f(k)z_k}
delante k=0
Traslacién k
S— a® f(k) F(z/a)
Convolucion | f;(k) x fo(k) = Zf:() f1(k —1) f5(2) Fy(2)Fy(2)
k
Sumat k z
umatoria ;f() p—
Valor inicial khjgf(k) ZILIIQOF(Z)
Valor final lim f(k'), si existe hm(z — 1)F(Z)
k—oo z—1
Potenciacién k™ f(k) <fz di> F(z)
z
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1.6.4 Transformada x inversa

El cédlculo de la transformada z inversa por medio de fracciones parciales
entrega una solucién analitica, mientras que los métodos de la division larga o
paso a una ecuacion en diferencias hacia atrds dan una solucién numérica de
manera simple y directa, permitiendo verificar la soluci6n analitica. No
siempre la utilizacion de las fracciones parciales es lo adecuado para el calculo
de la transformada inversa y debe pensarse siempre en las transformadas
basicas y las propiedades operacionales en primer lugar. Por ejemplo:

1 Z -1 <
Y() = mros - Aprog) YR =4 {m}
y(k) = 2 {z + 0.5}’1ﬁk21 uy(k—21) = (_0'5)}3721”8(1{: —21)

Ver los gjercicios resueltos [4] 1.10 y 1.11, y los gjercicios propuestos [5]
1.9,1.10 y 1.11 en la web del libro.

1.7 Funcion de transferencia de tiempo discreto
1.7.1  Defnicion

Igual que en el caso continuo, la funcién de transferencia para un sistema LT
de tiempo discreto (lineal invariable en el tiempo o lineal con coeficientes
constantes) de una entrada y una salida (SISO, Single Inpur Single Outpur) es la
relacidon entre la transformada z de la salida y la transformada z de la entrada
suponiendo condiciones iniciales iguales a cero, utilizando las ecuaciones en
diferencias hacia atras:

Z{y(k Y(z!
SR 100} N (G
Zlulk)H,;
Una fraccién impropia no tiene significado fisico y corresponde a un modelo

no causal; por ejemplo, la siguiente funcién de transferencia discreta genera
una ecuacidn en diferencias donde la salida depende de una entrada futura:

Y(z) 2 oz
S U(z) z—1 1—z1’

y(k) =y(k—1)+u(k+1)
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El siguiente es un ejemplo de una funcién de transferencia discreta:

Y(z) z—0.5
CU(2)  2(22—-0.7)

y(k+3)—0.7y(k+ 1) = u(k + 1) — 0.5u(k)
Obtencidn de la respuesta temporal a partir de la funciéon de transferencia:

Y(2)

G(2) = T’

y(t) = 27H{Y (2)} = 27H{G()U(2)}

Los polos y ceros en el caso discreto se definen, respectivamente, de
manera similar que en el caso continuo (seccién 1.4.2):
lim G(z) = oo, limG(z) =0
z—p; z—2z;
Los polos determinan la estabilidad del sistema, de manera que para un
sistema de tiempo discreto la estabilidad se logra si todos los polos tienen un
moédulo menor que uno (estan dentro del circulo unitario), tal y como se

muestra en la Fig. 1.6. Lo anterior se observa al dar la solucion a partir de las
raices caracteristicas:

y(k) = |\*(cy sen ok + ¢, cos k)| A < 1

Entre mas cerca del centro del circulo unitario estén los polos del sistema
de tiempo discreto, mas raipidamente desaparece el efecto de ese polo en la
respuesta temporal. A diferencia del caso continuo (secciéon 1.4.2), un polo
insignificante estd ubicado como maximo en el centro del circulo unitario (en
el caso continuo se puede llevar a —00).

Dada la relacién (1.43) entre las variables sy z (z = e7+%) se puede ver que
un polo o un cero estables continuos se convierte en un polo o cero discretos
que tiende al limite del circulo unitario si el periodo de muestreo se hace cada
vez mds pequeno. Esta es una de las razones por las cuales no es practico tomar
un periodo de muestreo demasiado pequeno.

El retardo en los modelos de tiempo discreto se representa como un
nuimero natural d llamado retardo puro, el cual corresponde a la parte entera
hacia abajo de la relacion entre el retardo continuo y el periodo de muestreo
(ver la seccion 1.5.2 para mas detalles):
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T

dzlfﬁ (1.46)

s

Dado que 2{f(t —d)} = 2~¢F(z), la funcién de transferencia discreta con
retardo toma la siguiente forma:

N(z) _ boz™ + b 2™ b, 12+, L

G(z) =
(2) D(z) : z" a2z 4 ta, 2+ a,

(1.47)

A la diferencia entre el grado del denominador y el grado del numerador,
sin tener en cuenta el retardo, se le denomina el orden relativo: n,, = n — m.
Se recomienda no incluir el retardo puro en la definicién del orden relativo en
el caso discreto, asi como no se incluye en el orden del sistema, dado que el
retardo puro solo afecta la respuesta temporal con un desplazamiento y lo que
queda de la funcién de transferencia da una mejor idea del comportamiento
del sistema. Es decir, no es lo mismo tener un modelo discreto de orden 2 sin
retardo que un modelo de orden 1 con un retardo de 1:

1 1
cooneron ¥ Tos

G,(z) =

El orden relativo incide en la respuesta temporal (seccion 3.6) y frecuencial
(seccién 3.7), de manera que, por ejemplo, un sistema de orden dos tiene un
comportamiento diferente si el orden relativo es dos, uno o cero (puede haber
incluso una reducciéon del orden, como se muestra en la secciéon 1.4.3). Si un
sistema continuo es de orden relativo igual a uno, entonces la pendiente de la
respuesta temporal al inicio es diferente de cero, mientras que si €s mayor que
uno obligatoriamente habrd una pendiente igual a cero.
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Fig. 1.17 Incidencia del orden relativo en la respuesta temporal a una entrada escalén
unitario para una funcion de transferencia de orden 2 (a) de tiempo continuo y (b) tiempo
discreto

Siun sistema discreto tiene orden relativo diferente del orden, la respuesta
temporal a un escaléon aparentemente no cumple con el requisito de
condiciones iniciales iguales a cero, tal y como se puede ver en la Fig. 1.17,
pero eso se debe a que se debe trabajar con la ecuacién en diferencias hacia
atras:

b kb b, T b

d+n,.
Glz) = 1+az 1 ++a, 2z +a,z™" z nr) (1.48)

La respectiva ecuacién en diferencias hacia atrés es:
y(R) + a0k — ) = boull — (d + 1 —m)) + -+ b, u(k — (d + )

En el caso de tiempo discreto el retardo total nk del sistema estd formado
por el retardo puro d y el retardo intrinseco n,., igual al orden relativo (ver la
seccion 1.7.2):

nk=d+n, (1.49)

Una funcién de transferencia discreta en términos de z y de orden n con
un polinomio numerador de orden m, es decir, de un orden relativo igual a
(n —m), tiene aparentemente (n — m) valores iniciales iguales a cero y no n,
como se indica en la definicién de funcién de transferencia, pero eso solo se
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debe a la presencia del numerador, el cual disminuye el orden aparente del
modelo (de ahi la importancia del concepto de orden relativo, especialmente
en el caso discreto). Si un modelo discreto no tiene ni retardo ni un polinomio
mayor que cero en el numerador, entonces el nimero de condiciones iniciales
iguales a cero es igual al orden del sistema, por lo que el numerador tiene un
efecto de “adelantamiento” de la respuesta temporal.

1.7.2 Discretizacion de la funcion de transferencia

Los sistemas dindmicos modernos combinan sistemas de tiempo discreto, en
forma de algoritmos implementados en computadores, microcontroladores u
otros dispositivos, y sistemas de tiempo continuo, como procesos o plantas
industriales, lo que exige la utilizacion de métodos que permitan estudiar
matemadticamente sistemas que incluyan ambos tipos de sistemas. En la teoria
de los sistemas de tiempo discreto se trabaja con modelos con sefiales de datos
muestreados, pero realmente son modelos con sefales digitales. El proceso
contrario al muestreo se denomina reconstruccion, en la cual dada una
secuencia de datos muestreados se obtiene una sefal de tiempo continuo. La
reconstruccién se implementa generalmente por medio de un retenedor de
orden cero (Zero-Order Holder, ZOH), dispositivo electronico que mantiene
la senal constante entre instantes de muestreo, tal y como se muestra en la
Fig. 1.18.

x(” x‘({"

- TS ."__7__.-' .
{1111

¢

x(t)
Xt

- || || [[]

t

Fig. 1.18 Proceso de muestreo y reconstruccion de sefiales

Dada una ecuacién diferencial ordinaria lineal con coeficientes constantes,
es posible discretizarla aproximadamente utilizando un método numérico,
para luego obtener la respectiva funcidn de transferencia discreta aplicando la
transformada z. Sin embargo, hay una manera de calcular directamente la
funci6n de transferencia discreta a partir de una funcidon de transferencia
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continua sin ninguna aproximacion, pero suponiendo una discretizacién con
un retenedor de orden cero.

Para empezar, se obtiene la funcién de transferencia de un retenedor de
orden cero a partir de su interpretacion dada en la siguiente figura:

(1) =u(t) —u(t—T)

T . x,( T
)y (1) o (2)

.
IE

Del primer diagrama se tiene, donde la salida del muestreador es una
funcién delta de Dirac (seccién 1.3):

o X, (s)

H<S> - X*(S) ?

X*(s) = £{6(t)} = 1

De acuerdo con el segundo grafico, la salida del retenedor de orden cero es
un pulso:

1 —T.s

Xp(s) = £{u,(0) —u,(t = T)} = - ==

Por lo tanto, la funcién de transferencia H(s) de un retenedor de orden
cero es:

_ —T.s
His)=1—¢ " (1.50)

S

En el caso de muestreo de un modelo continuo lineal con un retenedor de
orden cero se tiene:

G(2)
t u (KT, % u,(KT,) i /
U( ) / ( )» 20H | 6(s) y(t) i(iTs)
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El modelo continuo de la planta y el retenedor de orden cero es:

1 — 6—Tss

GH(s) G(s)

S

Aplicando la transformada z y sus propiedades:

G(2) = 2{ € GH(s)}} = 2 {z—l {i G(s)}}

S

G = 2 {z—l I {700}}

1

Teniendo en cuenta que al retardo e~ =% le corresponde 271, se tiene:

() = (1— 1)z {zl {&}}

Omitiendo el simbolo de transformada inversa de Laplace (el cual se
sobreentiende), la expresidn final para la discretizacién con un retenedor de
orden cero es:

G(z) = (1 —z—l)z{G(s)} (1.51)

S

La expresion anterior, de otro lado, equivale a lo siguiente:

_ Z{Respuesta a un escalon} z {G(5> %}
N Z{escalon} N z £ i

La féormula (1.51) es correcta si la entrada es muestreada con un retenedor
de orden cero. La Fig. 1.19 compara la respuesta temporal a partir de la
funcién de transferencia de tiempo discreto (circulos) y la compara con la
respuesta temporal a partir del modelo continuo con la entrada sin retenciéon
(linea delgada) y con retencion (linea gruesa), donde se observa que solo en
el Gltimo caso se obtiene el resultado correcto.

G(2)
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0.16

- — — — —y(t) sin entrada retenida
y(t) con entrada retenida | 7
O y(k) a partir de G(z)

t (seg)

Fig. 1.19 Discretizacion con un retenedor de orden cero

Codigo de MATLAB para la obtencién de la Fig. 1.19:

G =1tf(1, [6 1], 'InputDelay', 0.45); Gd = c2d(G, 0.2); t = 0:0.001:5; ul = sin(2*t); u2 = roc(ul,t,0.2); t3
=0:0.2:t(end);
u3 =sin(2*t3); y1 = Isim(G, ul, t); y2 = Isim(G, u2, t); y3 = Isim(Gd, u3, t3); plot(t, y1, ' b--', t, y2, 'r-',
13, y3,'ko")
xlabel('t (seg)'), legend('y(t) sin entrada retenida', 'y(t) con entrada retenida’, 'y(k) a partir de G(z)')
function ul = roc(u,t,Ts) % Funcion para la retencion (ZOH) de sefales
N = length(u); tmax = t(end); NTs = floor(tmax/Ts); dt = tmax/(N-1); Ns = Ts/dt; ul = zeros(1,N);
for i=0:NTs
ul(1,i*Ns+1) = u(1,i*Ns+1);
for j=2:Ns
if i*Ns+j <= N
ul(i*Ns+j) = ul(i*Ns+1);
end
end
end

Si el sistema tiene un retardo que es multiplo del periodo de muestreo
(t =d-T,), entonces,

G(z) = 41— 2 1)2 {G(*S)} (152)

S
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Si el sistema tiene un retardo que no es multiplo del periodo de muestreo
(tr=d-T,+7), donde 0 < 7 < 1, entonces es necesario aplicar a la parte
no entera 7 la llamada transformada z modificada Z,,{f(k)}, la cual no se
presenta en este libro, pero que se puede consultar en [17] o [16]. MATLAB
incluye la funcién c2d que permite la discretizacién en cualquiera de los casos
anteriores. Es decir,

T
=d-T ! d=|=—
e 7

S

S

Giz)=241-2YH%,, {M} (1.53)

Es importante indicar que existen otros métodos de discretizacion, los
cuales no se tratan en este libro, entre los cuales estdan: Tustin, mapeo de
polos y ceros (Matched), invariancia al impulso y aproximacién de primer orden
(FOH). L funcién de MATLAB c2d incluye esos casos. Para ilustrar el método
anterior, sea el siguiente modelo:

—0.45s

Gls)=2—,  T=02 d:{lJ:Z 7 =0.05

Entonces,

G(z) = 21— 212, {%}

El resultado se muestra en la Fig. 1.20. El c6digo de MATLAB es:

G =tf([1], [6 1], 'InputDelay', 0.45); Gd = c2d(G, 0.2); step(G, Gd, 1)
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Step Response

Gd =

Amplitude
o
S
S

09.02469 z + 0.008094

o
=1
@

o
=3
=]

z - B.9672

o
2

Sample time: 8.2 seconds

=]

. - - 01 02 03 04 05 06 07 08 09 1
Discrete-time transfer function. Time (seconds)

=}

Fig. 1.20 Comparacidn de la respuesta temporal de un modelo de tiempo continuo y su
aproximacion discreta con un retardo que no es multiplo del periodo de muestreo

En el caso de un retardo 7 = d - T, + 7 se puede ver que no es multiplo
del periodo de muestreo se obtiene un retardo puro adicional y una funcién
de transferencia propia; es decir, 7’ introduce en el modelo discreto un retardo
puro y no un retardo intrinseco. La figura anterior muestra la razén para el
aumento del retardo puro. En definitiva, el retardo total nk esta dado por la
siguiente expresion:

nk = {TLJ +1 (1.54)

S

En general, el retardo total incluye todas las opciones de retardo posibles
del modelo, dado que hay casos como el siguiente, donde el retardo intrinseco
carece de sentido (el retardo total es igual a 1y el retardo puro es igual a 2) y
el modelo se puede explicar solo como la discretizacion de un modelo
continuo que lleva a polos discretos muy cercanos al origen:

G(Z): 6122+622+b3 2b1z2+b2z+b35i20
(z4+ay)(z+¢e)(z+¢y) 22(z+ay)

Ejemplo de MATLAB:

G = zpk([], [-1, -100, -100], 10000); Gd = c2d(G, 0.1);
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Gd =

0.07679¢ (z+0.0001808) (=z+0.2388)

(z—0.9048) (z—4.54e-05)"2

Sample time: 0.1 seconds

Discrete—time zero/pole/gain model.

La relacién entre las variables s y z esta dada por la expresion (1.43), por
lo cual, dando diferentes valores a la variable s se obtienen los respectivos
valores de la variable z, de acuerdo con la siguiente expresion:

y = e5Ts = e(a+zB)Ts = T piBTs — ’Z’eup

’z’:eaTs7 (;OZBT

s

Plano s Plano z
4 T T 3r
1
L 2
3 3 Pas
4
2+ 54
1k
1
w ~
E E°
A+
A+
2F
2+
-3 F
-4 3
-4 3 2 1 0 1 2 3 4 3 2 1 0 1 2 3
Re(s) Re(z)

Fig. 1.21 Relacidn entre las variables s y z

Si a = 0y [ toma valores en el intervalo (—oo, +00), entonces |z| = 1y ¢
es un dngulo que toma valores en el intervalo (—oo, +00), lo cual corresponde
a un circulo unitario. Es decir, al eje imaginario (o = 0) le corresponde un
circulo unitario, al semiplano izquierdo (a < 0) le corresponde la regién
interna del circulo unitario y al semiplano derecho (a > 0) le corresponde la
region externa del circulo unitario. Para los anteriores y otros valores de a y 3,
la Fig. 1.21 muestra la relacion. Un hecho particular es que si 7, — 0,
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entonces z — 1, es decir, 7o es una buena idea muestrear con un periodo muy pequeiio,
dado que las raices discretas tenderdn al circulo unitario y la estabilidad
relativa no serd la mejor.

Ver los ¢jercicios propuestos [5] 1.12 y 1.16 en la web del libro.

1.7.3  Interpretacion de la funcion de transferencia

La funcién de transferencia puede interpretarse tanto como una respuesta al
impulso o una secuencia de ponderacion de la entrada. En efecto, en el primer
caso, si se supone que la entrada es un impulso unitario §(t) o §(k), para el
caso continuo o discreto respectivamente, la transformada es igual a 1 y la
respuesta temporal corresponde a la inversa de la funcién de transferencia, es
decir:

Y(s)=G(s), g(t)=y(t)= £ {G(s)} (1.55)
(k) =

Y(2) =G(2), g(k) =y(k) =27H{G(2)}

De esta manera, para el caso discreto se tiene, segin la definicién de
transformada z:

G(2) = 2D S™ k) 4 = 9(0) + 9(1) 1 + (D)2 4

(
D(z) £

LLa sumatoria puede obtenerse por division larga (ver seccién 1.6.4), de
manera que cuando y(0) = 0, entonces ¢g(0) = 0. Esto implica que la fraccién
es estrictamente propia. De otro lado, de la definicion de funcién de

transferencia continua se tiene la siguiente expresion utilizando el teorema
de convolucidn:

y(t) = LHG(s)U(s)} = £ Hg(t)} * £ Hu(t)} = /Q(T)U(t —7)dr
Para el caso discreto se tiene:

y(k) = 27H{G()U(2)} = 27Hg(k)} » 27 {u(k)} = Zg(i)U(k —1)
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La funcién de ponderacién es una funciéon continua w(t) o discreta w(k)
que se utiliza en integrales y sumatorias para dar a algunos elementos mas
peso en el resultado. En los dos casos anteriores se observa que si se tiene g(t)
o g(k), cada una de las cuales juega el papel de una funcién de pesos o
ponderaciones de la entrada en cada instante del tiempo, es posible encontrar
la respuesta temporal a cualquier tipo de entrada. El grifico de la respuesta al
impulso es una representacion grafica de la secuencia de ponderacion, la cual,
para el caso de sistemas asintéticamente estables es una secuencia que
converge a cero, y para sistemas discretos corresponde a un filtro IIR (/nfinite
Impulse Response, Respuesta infinita al impulso, filtro cuya salida tiene un
nimero infinito de términos) que se puede aproximar con un nimero finito
de términos con un filtro FIR (Finite Impulse Response, Respuesta infinita al
impulso, filtro cuya salida tiene un nimero finito de términos), dado que a
partir de cierto valor los demas términos son tan pequenos que se pueden
despreciar.

Un filtro de senales es un sistema dindmico que transforma una sefal
dependiendo de la forma de su respuesta frecuencial (seccion 3.7). De esta
manera, las sefiales se pueden manipular por medio de filtros a través de los
cuales pasan las sefiales y a la salida se obtiene una senal modificada. Un filtro
analdgico se construye con componentes fisicos (circuitos eléctricos, por
ejemplo), mientras que un filtro digital se construye en un dispositivo digital
por medio de ecuaciones matematicas. Tipos de filtro: pasabajas (secci6n
3.7.5), pasaaltas, pasabanda, muesca, multibanda.

Ver los gjercicios resueltos [4] 1.13 y 1.26, y los gjercicios propuestos [5]
1.15 en la web del libro.

1.8 Ecuaciones en el espacio de estado

En las anteriores secciones se presentaron dos métodos matematicos para el
estudio de los sistemas dindmicos: las ecuaciones diferenciales o en
diferencias y la funcién de transferencia. Aunque las ecuaciones diferenciales
y en diferencias pueden aplicarse a sistemas no lineales, su ventaja estd en el
estudio de los sistemas lineales invariantes en el tiempo (L'TI) y la
generalizacién e interpretacion de sus soluciones analiticas. De otro lado, la
funcién de transferencia es un método solo para sistemas L'TT. En esta seccién
se presenta el método del espacio de estado y de la ecuacion de estado, el cual
es el mas general para modelar y simular sistemas lineales y no lineales con
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parametros concentrados. En el capitulo 2 se utilizan las ecuaciones de estado
para la modelacién y simulacion.

1.8.1 Conceptos bdsicos

El método de las variables de estado es un poderoso método para la
modelacion matemadtica en el dominio del tiempo de sistemas dindmicos
lineales y no lineales, invariables o variables en el tiempo, MIMO o SISO,
dado que contiene la mayor informaciéon posible dada por sus variables de
estado. Al modelo obtenido se le llama modelo interno, dado que entrega toda
la informacién interna del sistema, aunque solo se midan algunas de sus
variables o una combinacién de ellas. A la funciéon de transferencia y a la
ecuacion diferencial se le denomina modelos externos, pues solo interesa
como se comportan las variables de salida (medidas) ante una variable de
entrada determinada.

Las variables de estado {z, z,,--,z,} de un sistema dindmico son el

conjunto mimumo de n variables tales que su conocimiento en un momento
inicial ¢,, junto con las variables de entrada en un momento ¢ > ¢,
determinan totalmente el comportamiento futuro del sistema. Un modelo
puede tener mds de las variables necesarias (algunas variables son linealmente
dependientes), pero solo las variables linealmente independientes son las variables
de estado. Las variables de estado generalmente corresponden a grados de
libertad (secci6n 1.1). El orden n de un modelo esta dado por esas n variables
de estado, lo cual corresponde a una realizaciéon minima del modelo. El estado
de un sistema dindmico corresponde al valor numérico de las variables de
estado en un instante determinado ¢;:

x(t)) = [7,(t)) wo(t;) - In(t1)]T

Por ejemplo, si el comportamiento de un sistema puede describirse
completamente por su posicion y velocidad, entonces su estado en un
momento determinado puede ser: (1 m, 0.8 m/s).

Cada una de las variables de estado conforman un espacio n-dimensional
llamado espacio de estado. Una trayectoria de estado es una secuencia de
puntos en el espacio de estado. En la Fig. 1.22 se muestra un espacio de estado
de dos dimensiones (llamado, en ese caso particular, espacio de fase) y una
trayectoria de estado para unas condiciones iniciales determinadas, dadas por
el punto rojo. Un punto sobre la trayectoria de estado representa un estado
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del sistema. La trayectoria de estado representa una idea de movimiento
diferente al de la dependencia temporal de cada variable, cada una de las
cuales se muestra en la Fig. 1.23 (se invita al lector a ver la relacion entre
ambas figuras); sin embargo, es importante resaltar que de una trayectoria de
estado no se puede deducir la escala de tiempo de las respuestas temporales.

X, m
(-]
(-] (-]
———
—
T
[
)
L i
A
o -
k>
\
]
|
1
|

1.6 : L : . 2

Fig. 1.23 Ejemplo de la dependencia del tiempo de las variables de estado (ver Fig. 1.22)
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Las variables de estado se pueden agrupar en un vector de estado:
x(t) = [z, (t) xy(t) - x,(t)]" (1.56)

La ecuacién de estado es un modelo matematico dado por un sistema de
ecuaciones diferenciales (dindmicas) de primer orden que relaciona las
variables de estado, tanto en tiempo continuo como discreto:

x(t) = fx(t),u(t)]

i, (t) = filzy (), ...z, (), uy (D), . .. u,, (1)] (1.57)

x(k+1) =f[x(k),u(k)]
z,(k+1)= flz,(k),...,z,(k),u (k),..., u,,(k)]

En las expresiones anteriores, u representa el vector de entrada, con cada
una de las m entradas (variable manipulable) del sistema dindmico:

(1.58)

u=[u Uy - um]T (1.59)

LLa ecuacién de salida de un sistema dindmico es el sistema de ecuaciones
algebraicas (estdticas) que relacionan las p variables de salida (variables
medibles u observables), dadas en el vector de salida y, con las n variables de
estado (variables internas) y las m variables de entrada (variables
manipulables):

y(t) = glx(t), u(t)]

y;(t) = gilzy (1), oz, (8, g (8), .y, (2)] (1.60)
y(k) = g[x(k), u(k)] e
y; (k) = gilzy(k), .. 2, (k) uy (K), .oy u, (K)] :
Donde
y=[Y Y - YT (1.62)

Las ecuaciones en el espacio de estado son el conjunto de la ecuacién de
estado y ecuacién de salida para la modelacion matematica de un sistema
dindamico:
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x(t) = f[x(t),u(t)]
{Y(t) = g[x(t),u(t)] (1.63)
x(k +1) = f[x(k), u(k)]
{y(k) = g[x(k), u(k)] (1.64)

Las ecuaciones en el espacio de estado con el mismo retardo continuo 7 0
retardo puro discreto d (ver seccion 1.4.1) en cada variable de entrada tienen
la siguiente forma (en este libro se trata solo el retardo en las entradas, pero
es posible utilizar retardos en las variables de estado):

x(t) = f[x(t),u(t — 7)]
{Y<t) = g[x(t),u(t — 7] (1.65)
x(k+1) = f[x(k), u(k — d)]

{ y(k) = g[x(k),u(k — d)] (1.66)

Las dos expresiones anteriores se simplifican considerablemente para el
caso lineal invariable en el tiempo, en cuyo caso las ecuaciones toman las
siguientes formas:

{x(t) = Ax(t) + Bu(t — 1) (1.67)
y(t) = Cx(t) + Du(t —7)
Donde
x(t) € R, u(t) e R™*1 y(t) e RP¥!
A e R, B e R™™, C e RP*™) D e Rp*™

Y,

{x(k +1) = &x(k) + Tu(k —d) (1.68)

y(k) = Cx(k) + Du(k — d)

Donde

x(k) e R, u(k) e R™, y(k) € RPX!
& c R, T € Rvm, C € RP ", D e Rpxm
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En la secciéon 1.8.6 se muestra la equivalencia entre los dos modelos
anteriores. En la secciéon 3.4 se muestra el proceso de linealizaciéon para
transformar un modelo no lineal en uno lineal, pero valido solo cerca a cierto
estado de interés.

TABLA 1.5 VARIABLES DE ESTADO FiSICAS A PARTIR DE LOS ELEMENTOS

ALMACENADORES DE ENERGIA

Elemento almacenador de . Variable de estado
P Energia .
energia fisica
Capacitor C CcVv?/2 Voltaje V
Inductor L Li%/2 Corriente i
Masa en movimiento 7 mv? /2 Velocidad v
Masa en reposo 7 mgh Posicion o altura h
Momento de inercia J Jw?/2 Velocidad angular w
Resorte £ ka? /2 Elongacion z
Condensador térmico ¢ CT?)2 Temperatura T’
i 1 liqui .
Densidad del liquido p en ogh Nivel del tanque h
un tanque

Las variables de estado pueden ser de varios tipos, cada una de las cuales
se ejemplifica a lo largo del libro:

Variables fisicas de estado: variables con significado fisico conocido y
que corresponden, generalmente, a elementos almacenadores de
energia (TABLA 1.5). Estas son las variables que generalmente se
utilizan en la representacion de sistemas dindmicos reales y en la
simulacion, dado que hay interés en que las variables internas tengan
significado. Estas variables son las mas utilizadas a lo largo de este
libro.

Variables de fase: variables que corresponden a una variable
dependiente y sus primeras (n — 1) derivadas (ver seccion 1.8.2).
Estas variables no siempre tienen significado fisico y se utilizan en
procesos matematicos, como la obtencién de la ecuacién de estado a
partir de la ecuacion diferencial, donde no interesa el comportamiento
interno.
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e Variables candnicas: para el caso lineal, son las variables seleccionadas
de una manera especial para efectos de analisis o disefo. Por ejemplo,
se tienen las variables en una forma candnica diagonal o de Jordan
(seccién 1.8.7), forma candnica controlable u observable (seccién
4.10.5), entre otras. La palabra canénico en ciencia se usa para indicar
una eleccion especial, estdndar, simple, ideal y natural de una serie de
convenciones posibles; es algo estindar y no arbitrario.

Como se mostrard en la seccién 1.8.7 (transformaciones lineales), las
formas anteriores son equivalentes matematicamente y de ellas se puede
obtener las mismas conclusiones, pero cada una tiene sus respectivas ventajas.

Finalmente, las ecuaciones en el espacio de estado son la base para la
simulacién (capitulo 2), utilizando los llamados diagramas de estado, los
cuales utilizan el concepto de integrador (caso continuo) u operador de
desplazamiento hacia atrds (caso discreto) y que se describen en la seccidon
2.6.

En el capitulo 7 se explican varias ecuaciones de estado en variables fisicas,
las cuales se resumen a continuacion.

Ejemplo de una ecuacién de estado no lineal no lineal de tiempo continuo
(no se puede llevar a la forma matricial):

: g f u y=1I
Ty = —=S€Nr; — — Ty +—
m

l ml

El siguiente es un ejemplo de una ecuacion de estado lineal de tiempo
continuo en forma matricial:

- 0 0 1 0 7 r 0 0 7
x4 0 0 0 1 X, 0 0
Ty _ _ R 0 _htfs s Lo 4 1 0 [%}
T my my my T3 my Uy
1 O R £ 1 P
L My My my L My |
x = Ax + Bu

Este es un ejemplo de una ecuacién de estado no lineal de tiempo discreto
en diferencias hacia delante y un periodo de muestreo igual a T, el modelo
lineal no se puede expresar de forma matricial:
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(1(k+ 1) =2y (k) + Tay(k)
ixz(l{: +1) 9t senz, (k) + (1 —

=) (k) 45 uh)

l
y(k) =z, (k)
La ecuacion de estado lineal anterior en forma matricial es la siguiente:
1 T 0
zy(k+ 1)] y [aﬁ(k)]
= T T T, k
[w2(k+1) R £ I ) I K R
l m ml

s =0 o [

x(k+1) = ®x(k) + Tu(k),  y(k) = Cx(k)

En los ejemplos anteriores D = 0, lo cual es equivalente a una funcién de
transferencia estrictamente propia, algo comin en los procesos, pero no en el
disefio de controladores, donde puede darse que D #+ 0 o que la funcién de
transferencia sea propia. En las siguientes secciones se tratan mds a fondo los
temas relacionados con la ecuacién de estado lineal con coeficientes
constantes, lo cual permite entender mejor el comportamiento de los sistemas
lineales, aunque sea en una region cerca de un estado de interés (los modelos
no lineales no se pueden resolver).

1.8.2  Ecuacion de estado a partir de la ecuacion diferencial o en diferencias

LLa ecuacion de estado es el método mas general de modelaciéon matematica y
es aplicable a sistemas lineales y no lineales, de tiempo continuo y discreto.
Por lo tanto, la transformacion de cualquier modelo a una ecuacién de estado
es una operacién importante. Ademads, como se estudia en la seccién 2.6, la
ecuacion de estado es la base para la simulacion (métodos numéricos), dado
que solo es necesario desarrollar métodos numéricos para ecuaciones
diferenciales de primer orden. El método general de transformacién de una
ecuacién diferencial o en diferencias a una ecuacién de estado se basa en el
concepto de las variables de fase, mencionadas en la secciéon anterior. En
primer lugar, se presenta el método para el caso cuando el término

74



1. Fundamentos matemadticos de los sistemas dindmicos

independiente no depende de las derivadas de la entrada y mds adelante
cuando si depende, algo que lleva al concepto de ceros, tal y como se explica
en la seccion 1.4.2. Sea la siguiente ecuacion diferencial no lineal:

(n) .ody n)  d™y
F(tauayayaya"'ay)zoa Yy = dtay:%

Con respecto a la derivada de mayor orden, la ecuacion tiene la siguiente
forma:

(n) . (n—1)
Iy =f<t,u,y,y,y,---, Y )

(1.69)
Ly ) = Yo1,9(0) :yoza'“a(n?;l)(o) = Yon
Se definen las siguientes variables de fase:
Ty =Y, Ty=Y, Ty3=Y, v T, = (n;) (1.70)

Derivando cada una de las variables de estado anteriores y reemplazando
en la dltima ecuacién la ecuacion (1.69) se obtiene la ecuacion de estado en
variables de fase:

Ty = Ty
Ty = Ty {X—f(tux)
: Yy=1x
z, = f(ta U, 113'1,113'2,'“71‘”)
1.71
y(0) (470
x(0) = y(ZO)
(n—1)
v (0)

Las ecuaciones de estado se pueden representar grificamente utilizando
diagramas de estado (seccioén 2.6), lo cual es util para la solucién numérica y
la simulacion de sistemas dindmicos.

Para el caso lineal con coeficientes constantes la ecuacion diferencial es:

(n) (n—1) .
y+a y +...+a, §+a,y=u(t)
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La respectiva ecuacion de estado es:

{X =Ax+ Bu
y = Cx
0 1 0 0 0
0 0 1 0 w I{0-! (1.72)
A:l : | B:i:i C=[1 0 0]
0 0 0 1 0
L—an —Cpq —Qy, o —alJ |-1J

En el caso de la ecuaciéon en diferencias se obtiene una expresion similar,
la cual se presenta para el caso lineal:

y(k+n) + ayy(k+n— Dt fa, yy(k+1) + ay(k) = ulk)

{x(k + 1)= ®&x(k)+Tu(k)
y(k) = Cx(k) + Du(k)

0 1 0 0 0

P = : : : : r=|:

0 0 0 1 0

—Qp —0p 1 —Qup_o - 1
C=[ 0 -~ 0

Cuando la ecuacién diferencial tiene derivadas de la variable de entrada y
el término independiente es lineal, las variables de fase se definen de manera
diferente para evitar que la ecuaciéon de estado contenga derivadas de la
entrada. El método general para un término independiente con una derivada
de orden » < n de la entrada consiste en introducir en la Gltima variable de
fase z,, las derivadas de la entrada hasta (r — 1) vy en las anteriores variables
de estado las derivadas de la entrada con un orden menor, de manera
triangular. El paso de una ecuacién en diferencias con diferencias en la entrada
a una ecuacién de estado de tiempo discreto se hace de una manera similar.
Otra forma de realizar la transformacién cuando las condiciones iniciales son
iguales a cero es convertir la ecuacién diferencial o ecuacion en diferencias a
una funcién de transferencia y de ahi pasar a la ecuacién de estado, tal y como
se explica en la seccion 1.9.
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Ver los ejercicios resueltos [4] 1.15 y los ejercicios propuestos [5] 1.18 en
la web del libro.

1.8.3  Solucion de la ecuacion de estado homogénea lineal de tiempo continuo por
valores y vectores propios

La ecuacion de estado lineal con coeficientes constantes (L'TT) se puede
resolver por varios métodos, cada uno de los cuales se presenta a continuacion
[9]. El método mas directo, pero menos interesante, en el caso SISO consiste
en convertir la ecuacion de estado en una sola ecuacion diferencial ordinaria'y
resolverla (un proceso que solo da la solucién de la variable de salida y no de
todas las variables internas de estado). Aunque en la practica la herramienta
mds utilizada para la solucidn de estas ecuaciones son los métodos numéricos
(simulacién) para la obtencién de una solucién numérica, la solucion analitica
permite comprender mejor el comportamiento general de la solucién en
dependencia de los parimetros del modelo. Ademas, es necesario resolver
muchas ecuaciones por el método propuesto para asi dominar la técnica
matemadtica y poder concentrarse en el andlisis del resultado y desarrollar la
intuicién matemadtica (un buen dominio de la técnica implica visualizar la
forma de la solucion en casos simples sin requerir la realizaciéon de los
calculos). A continuacién, se resuelve la ecuacion de estado por el método de
los valores y vectores propios (la ecuacién de salida no se requiere o se puede
asumir que la salida es todo el estado). Sea

x = Ax+ Bu

Al igual que en el caso de las ecuaciones diferenciales ordinarias (seccion
1.2), se resuelve primero la ecuacion homogénea, sin el término
independiente:

x = Ax (1.74)

De manera similar a las ecuaciones diferenciales, donde la solucién de la
ecuacién homogénea se obtiene en la forma 3y = e que conduce a la ecuacién
caracteristica, la solucion de la ecuacién anterior se puede hallar de la
siguiente manera, donde, dado que x es un vector, la solucién debe incluir un
vector v:
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x = vert (1.75)
Reemplazando la solucién propuesta en la ecuacién homogénea se obtiene:
Aver = Avet
Cancelando el término exponencial:
Av = Av
Organizando los términos:
(M—A)v=0 (1.76)

LLa ecuaciéon anterior tiene una solucién con vectores no nulos si y
solamente si:

IAI—A| =0 (1.77)

Las ecuaciones anteriores corresponden al problema de valores y vectores
propios y la ecuacién (1.77) es la misma ecuacidn caracteristica de la ecuacién
diferencial ordinaria, algo de esperar, dada la correspondencia entre la
ecuacion de estado y la ecuacion diferencial. Los valores propios corresponden
a los polos de la funcién de transferencia o raices caracteristicas de la ecuacion
diferencial (los ceros de un modelo MIMO se tratan en la secciéon 1.4.2). Por
lo tanto, se deben analizar tres posibles casos de valores propios: (1) reales sin
repetir, (2) complejos sin repetiry (3) repetidos. En el caso de valores propios
reales sin repetir la solucion de la ecuacién de estado homogénea es:

x = ¢, v eMt 4 cyvpeat - (1.78)

En el caso de valores propios complejos (A = a + i3 y su conjugada), se
tiene:

x = ¢;Re{v,eM} + ¢, Im{v,er} + - (1.79)

Si se tienen valores propios repetidos con una multiplicidad geométrica
igual a la multiplicidad algebraica, entonces se aplican las dos expresiones
anteriores sin ningdn problema. En caso contrario, la solucién toma la
siguiente forma (en el caso de valores propios complejos se expresa la funcion
exponencial como seno y coseno):
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1
X =, veM + ¢y (vE+ v, )eM + ey <§vt2 + v, t+ V92> eM 4.

VA GVt )eN (v + egvyy - )ter (1.80)

(c
1
]

(cV + ¢V )t 4 -

Donde v es el vector propio y v, conforman los vectores propios

generalizados. En efecto, si se busca una segunda solucion en la forma x =
(vt +a)e* (con a = 0, de manera similar a las ecuaciones diferenciales, no
se obtiene una solucién):

x =veM + Aa + vt)eM

Reemplazando en la ecuacion de estado, destruyendo los paréntesis y
agrupando se tiene:

ver + haeM + AvteM = Aaer + Avte, M —A)a=—v

El 1dltimo término corresponde a la forma de los valores propios
generalizados, es decir,

a,:Vg

LLa multiplicidad algebraica (ma) es igual al nimero de veces que un valor
propio es solucién de la ecuacion caracteristica. Para el caso de un valor propio
multiple, el nimero de vectores propios linealmente independientes que le
corresponden se denomina multiplicidad geométrica (mg):

mg(A) = n —rank(AI — A) < ma(\) (1.81)

La multiplicidad geométrica (mg) es igual o menor que la multiplicidad
algebraica (ma). Si la multiplicidad geométrica es menor que la algebraica se
dice que el valor propio es defectuoso y es necesario completar el conjunto de
vectores linealmente independientes con los llamados vectores propios
generalizados, los cuales se calculan de la siguiente manera:

AI—A)v, =0
(1.82)
()\ZI — A)VZQ = —Vi1, ()\ZI - A)Vi3 = Vi,
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Las expresiones anteriores se pueden escribir de la siguiente forma, donde
F(t) es la matriz fundamental y su determinante corresponde al wronskiano,
el cual debe ser diferente de cero en un intervalo (igual al eje real para el caso
de ecuaciones de estado con coeficientes constantes) para que las soluciones
sean linealmente independientes (por lo tanto, la inversa de la matriz F existe
para todo valor de t):

x,(t) = F(t) [c;] = F(t)c, F(t) = [vieMt vyeret .| e RV

Para las condiciones iniciales en ¢ = 0 se tiene:
x(0) =F(0)c, c=F1(0)x(0)

De esta manera, la solucién de la ecuacion de estado homogénea se puede
escribir de la siguiente forma:

x, (t) = F(£)F1(0)x(0) = ®(£)x(0) (1.83)

Donde ®(¢) es la matriz de transicién del estado, la cual se analiza con
detalle en la seccién 1.8.5:

&) =FOF 1(0)F(t) =®)FO)F 1(t)=F 10)®'(t) (1.84)

Para hallar una solucién particular de la ecuacién no homogénea se puede
utilizar el método de coeficientes indeterminados o el método de variacion de
las constantes. El método de coeficientes indeterminados se aplica cuando el
término independiente Bu(t) tiene esta forma (combinacién de polinomios,
exponenciales, senos, cosenos o cierta combinacién de dichas funciones),
donde p,; y q; son vectores columna):

Bu(t) = e®[(p, + Pyt + ) cos Bt + (q, + qut + - )sen Bt]  (1.85)

En ese caso la solucién tiene la siguiente forma, donde a; y b, son vectores
columna con coeficientes indeterminados:

X, (t) = e*[(a; + ayt + ) cos Bt + (by + byt 4+ -+ )sen 5t]  (1.86)

80



1. Fundamentos matemadticos de los sistemas dindmicos

Si parte de la solucion no homogénea estd r veces en la solucién
homogénea, entonces es necesario aumentar el grado de los polinomios en la
expresion anterior en 7 grados.

En el método de variacién de las constantes se propone hallar la solucion
en una forma donde se cambian las constantes arbitrarias por funciones. Sea

x = Ax + Bu
La solucién de la ecuacion homogénea es:
x,(t) =F(t)c
Se busca la solucién en la forma:
%, (t) = F(£)C(1)

Se deriva la solucién particular y se reemplaza en la ecuacion no
homogénea:

F(t)C(t) + F(t)C(t) = AF(t)C(t) + Bu(t)

Dado que F(t) satisface la ecuaciéon de estado, entonces F(t) = AF(t) y
reemplazando en la ecuacion anterior se obtiene:

AF(t)C(t) + F(t)C(t) = AF(t)C(t) + Bu(t)

Simplificando:
F(t)C(t) = Bu(t)
Despejando:
C(t) = F'(t)Bu(t)
Integrando:

C(t) = /F_l(T)Bu(T)dT

LLa solucion de la ecuacion no homogénea es:

% (1) = F(#) / F1(7)Bu(r)dr
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LLa solucion general de la ecuacién de estado no homogénea es:
x(t) = F(t)c + F(t) / -1 (7)Bu(r)dr

Utilizando las condiciones iniciales, ademas de la expresion (1.84) y una de
las propiedades de matriz de transicion del estado dada en la seccién 1.8.5
(®1(t) = ®(—t)), se llega a la siguiente forma, en términos de la matriz de
transicién del estado:

x(t) = ®(#)x(0) + B(t) / &(—7)Bu(r)dr (1.87)

Como en (1.84), se tiene que ®(t) = F(¢)F1(0). Se observa que ®(¢) no
depende del término independiente y puede hallarse a partir de la solucién
de la ecuacion homogénea.

En la seccion 1.8.7 se presenta un método para transformar la ecuacién de
estado a una forma especial, la cual es mds simple de resolver. Por ejemplo, si
se puede llevar la matriz A de la ecuacion de estado a una forma diagonal,
entonces una ecuaciéon de orden n se reduce a la solucién de n ecuaciones
diferenciales lineales de orden 1, mucho mds simples de resolver.

Ver los ejercicios resueltos [4] 1.16 a 1.19, y los gjercicios propuestos [5]
1.19 en la web del libro.

1.8.4 Solucion de la ecuacion de estado lineal de tiempo continuo por

transformada de .aplace

La solucién de la ecuacion de estado lineal de tiempo continuo por el método
de la transformada de Laplace (seccién 1.3) es mas directo y sencillo:

% = Ax + Bu
Transformada de Laplace de cada término:
sX(s) — x(0) = AX(s) + Bu(s)
X(s) = (sI— A)"'x(0) + (sI— A)"'Bu(s)
x(t) = £7H(sI — A) 1 }x(0) + £ {(sI — A)'Bu(s)}
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Sea la siguiente matriz (Ilamada matriz de transicién del estado):
®(t)=LH{(sI-A) '} (1.88)
Aplicando el teorema de convolucién de la transformada de Laplace:

L7H(sI - A)'Bu(s)} = £HsI— A) '}« £7H{Bu(s)}

= /<I>(t — 7)Bu(r)dr
Finalmente,
x(t) = ®(t)x(0) + / ®(t — 7)Bu(r)dr (1.89)

Teniendo en cuenta las propiedades de la matriz de transicién del estado
®(t) que se exponen a continuacion en la seccién 1.8.5, se obtiene la misma
expresion de la ecuacion (1.87). Cambiando el tiempo inicial a ¢, se obtiene:

¢
x(t) = ®(t —ty)x(ty) + /fIJ(t — 7)Bu(r)dr (1.90)

to
De la expresion (1.89) se puede ver que cuando la entrada es un escalar e
igual a una funcién delta de Dirac (seccién 1.3) §(t), entonces el modelo es
equivalente a uno sin entrada y con condiciones iniciales iguales a [x(0) + B].

Es decir, una entrada extremadamente grande al inicio incrementa las
condiciones iniciales en un valor finito que depende de la matriz B:

x(t) = ®(t)x(0) + /fb(t —7)Bd(7)dT = ®(t)x(0) + ®(¢)B

Lo cual equivale a la solucion de la siguiente ecuacion de estado:
x = Ax, x(0) =x,+B

Se invita al lector a obtener la matriz de transicién del estado de los
ejemplos de la seccion anterior utilizando la transformada de Laplace.
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Ver los ejercicios resueltos [4] 1.20 y los ejercicios propuestos [5] 1.20 en
la web del libro.

1.8.5 Matriz de transicion del estado y el método de las series de potencias

LLa matriz de transicién de estado, dada por las ecuaciones (1.84) y (1.88),
juega un papel importante tanto en la solucién de la ecuacidon de estado como
en su discretizacion (seccion 1.8.6), por lo que es importante conocer sus
propiedades. Dicha matriz se puede calcular por medio de una serie de
potencias, tal y como se muestra a continuacion. Sea

x = Ax

La solucién de esta ecuacion se busca ahora por medio de una serie de
potencias:

x(t) = ay + a,t + ayt? + agt® + -
Derivando:
X = a; + 2a,t + 3azt? + -
Reemplazando en la ecuacién de estado:
a, + 2a,t + 3agt? + - = A(ay + a;t + a,t® + agtd + )
[gualando los términos semejantes:

1 1 1 1
a, = Aaja, = §Aa1 = iAQaOa3 = gAa2 = 2—.3A3aO

Reemplazando en solucidn en forma de serie se obtiene:

1 1

1 1
x(t) = (I FAL A2 AP 4 ) a,
2 2-3
En t = 0 se tiene:

x(0) = a,
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Por lo tanto:

1 1
x(t) = (I + At +§A2t2 +T3A3t3 + - ) x(0)

La solucién de la ecuacién de estado homogénea es, segun las ecuaciones
(1.83) vy (1.89):

Comparando se llega a la siguiente expresion:

_ 1 242 1 343 _ S 't
B(1) = T+ Al + 5 A’ + 5 A% +---_Z;T (1.91)

En el caso escalar, la serie anterior corresponde a una funcién exponencial,
pero no tiene sentido para el caso matricial (un escalar elevado a una matriz
no tiene significado matemadtico). Sin embargo, y por analogia, a la serie
anterior se le denomina la matriz exponencial (o exponencial de una matriz o
exponencial matricial) y se le representa como e?!, aunque solo debe
entenderse como una representacion de la serie de potencia
(coincidencialmente, y para fines mnemotécnicos, la mayoria de las

propiedades se pueden obtener si se considera que eA* es una funcién
exponencial):
At — Loyo2 1 asys

Las propiedades de la matriz de transicion del estado se muestran en la
TABLA 1.6 y se obtienen a partir de su representacion en serie de potencias
y la operacion con series.

LLa primera expresion se obtiene directamente haciendo t = 0 en la serie.
LLa quinta propiedad se obtiene derivando la serie, sacando A como factor
comun e identificando que lo que queda corresponde de nuevo a ®. Si la sexta
propiedad es correcta, entonces haciendo 7 = —t se obtiene la segunda
propiedad; aplicindola m veces con 7 =t se obtiene la cuarta propiedad;
haciendot =t, —t; y7 = t; — t,, se obtiene la tercera propiedad. La séptima
propiedad se demuestra de manera semejante a la sexta propiedad. Por lo
tanto, demostrando la sexta propiedad se deducen las otras tres (y una cuarta).
La sexta propiedad se obtiene operando con las series:
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Z At S A 7“7

7=0

TABLA 1.6 PROPIEDADES DE LA MATRIZ DE TRANSICION DEL ESTADO

(1) ®(0) = Ie® = 1

(2) @71(t) = ®(—1) (eA) ™t = e
(3) @(tQ - tl>‘b<t1 — to> = @(tz — to) eA(tQ_t1>€A(t1_tO>
= eA(t27tO)

(4) [®(0]" = B(m) (At — gAmt
dP(t) deht

5 = APt — AeAt

5220 _ aa Sy

(6) ®(t+7)=P(t)®P(7) eAHT) — At AT

(7) eArtehat = eMitA)t ji A A, = A,A,

El producto de Cauchy de dos series infinitas es (se puede demostrar por
induccién matematica):

() (50) - E%ee

=0 k=0 =0

Teniendo en cuenta el producto de Cauchy de dos series convergentes y
multiplicando y dividiendo por k!

AltlAkl k-l ]{?'tl k—l1
I Z Z

k=0 =0

Férmula del binomio de Newton:

k _
k! thrht
(t+7)" = E _
— (k-1
Por lo tanto:

VARt
Z ” — Bt + 1)
=0
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Si A es una matriz diagonal, entonces:
{al 0 - 0'| evt (0 .. 0
A= e eAfJQ o ﬂ (1.92)
R Lo 0 o ol

n

1.8.6  Discretizacion de la ecuacion de estado de tiempo continuo

Al igual que la discretizacion de una ecuacion diferencial lineal con
coeficientes constantes y una funcién de transferencia (secciones 1.5y 1.7.2,
respectivamente), se muestra a continuacion el proceso de discretizacién de
una ecuacidn de estado, inicialmente sin retardo (la ecuacién de salida es una
ecuacion algebraica y solo se requiere tomar sus valores en los instantes de
muestreo). Como en los dos casos anteriores, aqui también se asume el uso de
un retenedor de orden cero y la correcta seleccion del periodo de muestreo.
Se parte de la ecuacion (1.90):

t
x(t) = ®(t —ty)x(t,) + /@(t — 7)Bu(r)dr
tg
Tomando t, = kT, yt = (k + 1)T, con un retenedor de orden cero, lo cual

garantiza que la entrada permanece constante entre dos instantes de
muestreo, se obtiene:

(k+1)T,
x((k+1)T,) = ®(T,)x(kT,) + / ®((k+1)T, —7)Bu(r)dr
kT,
Entre instantes de muestreo u(7) permanece constante e igual a u(kT,):
(k+1)T,
x((k+1)T,) = ®(T,)x(kT,) + / ®((k+ 1T, — 7)dBu(kT,)
kT,

La integral se puede simplificar con un cambio de variables 6 = (k +
DT, —T:
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(k+1)T, T,
/ ®((k+1)T, / B(t
kT 0

La ecuacion de estado discreta y la ecuacion de salida son:

x((k+1)T,) = ®x(kT,) + Tu(kT,)
{y(kTs) = Cx(kT,) + Du(kT,)

Omitiendo el periodo de muestreo:

{x(k: +1) = &x(k) + T'u(k)
y(k) = Cx(k) + Du(k)
T, (1.93)
d = AT I‘:/ ®(t) dtB

Ahora se discretiza el modelo con retardo (1.67), donde se asume que todas
las entradas tienen el mismo retardo:

{x(t) = Ax(t) + Bu(t —7)
y(t) = Cx(t) + Du(t — 1)

Cuando el retardo es un multiplo del periodo de muestreo (7 =d - T) el
modelo discreto tiene la siguiente forma, lo cual equivale a tener z=¢ en la

funcién de transferencia, tal y como se explica en la seccion 1.7.2 y expresion
(1.52):

x(k+1) = ®x(k) + Tu(k —d) (1.94)

Para el caso cuando el retardo no es un miltiplo del periodo de muestreo
(tr=d-T,+7),el problema se puede dividir en dos partes: el retardo entero
d mds un retardo 7 menor que el periodo de muestreo. A continuacion, se
discretiza el modelo con un retardo 7 =7 < T, (d =0). Se parte de la
solucion continua con una entrada con retardo:
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(k+1)T,
x((k+1)T,) = ®(T.)x(kT,) + / ®((k+ 1T, —t) Bu(t — 7)dt

kT

s

Debido a que el retardo hace que la entrada quede entre dos instantes de
muestreo, es necesario dividir la integral en dos partes:

(k+1)T,

/ B((k+ 1)T, — ) Bu(t — r)dt —

kT
KT +1 (k+1)T,
:/ B((k + 1)T, — t) dtBu((k— 1)T,) + / B((k + )T, — t) dtBu(kT))
kT, KT +7

De esta manera, el sistema discreto con retardo menor que el periodo de
muestreo es, omitiendo 7', en la ecuacion de estado:

x(k+1) = ®x(k) + Tju(k) + T'yu(k—1) (1.95)
Donde,

—®T), T, / B()dtB, T,—®(T —T)/w) B

0
Este modelo en la forma matricial tiene la siguiente forma:

[ I b | et 8 ) XIS

El modelo discreto con retardo aumenta su orden en m (nimero de
entradas con retardo) con respecto al modelo continuo, tal y como sucede con
la funcién de transferencia, donde un retardo no polinomial e~ incrementa
el orden en 27! (lo cual equivale a tener un polo en el origen). Es importante
resaltar que la ecuacién de estado anterior tiene m polos en el origen, pero
ese retardo no se puede expresar en un solo término de la forma u(k — 1),
sino que requiere de otro término u(k), como se muestra en la ecuacion
(1.96). Sin embargo, la funcién de transferencia respectiva si muestra el
retardo de 1 (ver el ejemplo siguiente). L.a Gnica forma de que no se
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incremente el orden de la ecuacion de estado discreta es que el retardo sea
exactamente un multiplo del periodo de muestreo, como en (1.94).
Para el caso general cuando 7 = d - T, + 7/, se tiene una combinacién de

los dos casos anteriores al cambiar £ — k — d en las entradas (forma que
entrega MATLAB):

[x(kz—kl)] _ [(I, rl] { ( x(k) I,
u(k

wk—a)l =lo o _(d+1))}+[1]u(k—d) (1.97)

Donde,

= 7]
S
La discretizaciéon también es posible con diferentes retardos en cada
entrada, pero la deduccién es un poco mds extensa y se omite aqui (la funcién
c2d de MATLAB considera todos estos casos). La expresion anterior puede
llevarse a la forma (1.98) sin el retardo d, pero donde se incrementa el orden
en (d + 1) x m, es decir, d x m variables mds con respecto a dicho modelo.

En [18] se encuentra la funcién c2d_expand de MATLAB para el célculo de
dicho modelo.

x(k+1) ® I, T, 0 x(k) 0
u(k — d) 0 0 I - 0| |uk—(d+1)) 0
: =+ : + || u(k) (1.98)
u(k—1) 0 0 0 - I u(k—2) 0
u(k) 0 0 0 - 0 u(k—1) I

Normalmente, las ecuaciones de estado de tiempo discreto se resuelven de
manera iterativa, como en el caso de las ecuaciones en diferencias, pero
también se pueden resolver de manera analitica por métodos similares a los
presentados en la secciéon 1.8.3. Adicionalmente, se puede resolver por
sustituciones progresivas, tal y como se muestra a continuacién. Sea

x(k+1) = ®x(k) + T'u(k)
Haciendo £ = k + 1 en la ecuacién anterior:

x(k+2)=®x(k+1)+Tu(k+1) = ®[®x(k) + Tu(k)] + Tu(k + 1)
= ®23(k) + ®Tu(k) + Tu(k + 1)
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Haciendo &£ = k£ + 1 en la ecuacidn anterior:

x(k+3) = ®x(k+2) + Tu(k + 2)
= ®[®?x(k) + ®Tu(k) + Tu(k +1)] + Tu(k + 2)
= ®*x(k) + ®°Tu(k) + ®Tu(k + 1) + Tu(k + 2)

Y asi, de manera sucesiva, se llega al siguiente término general:
x(k+n)=®"x(k) + " 'Tu(k) + -+ Tu(k+ (n —1))

Haciendo k£ = 0, y cambiando n por k al final, en la ecuacién anterior se
obtiene:

k—1
x(k) = ®x(0) + Y ®FI1Tu(j) (1.99)
J=0

La expresidn anterior es semejante a la solucidon (1.89) de la ecuacién de
estado de tiempo continuo. Se invita al lector a llegar a la misma solucion
aplicando la transformada z. Dicha solucidén serd util para el estudio de otros
temas, como el de la secciéon 4.10 sobre controlabilidad y observabilidad.

Ver los ejercicios resueltos [4] 1.21 y 1.22, y los gjercicios propuestos [5]
1.21y 1.22 en la web del libro.

1.8.7 Transformaciones lineales y formas canonicas

Una ecuacién de estado lineal 7o es snica para un sistema, dado que se puede
hacer un cambio de variables utilizando una matriz de transformacién (la
transformacién mas simple consiste en cambiar el orden de las variables de
estado y renombrarlas). Una transformacién lineal (o transformacién de
similitud) es una matriz cuadrada invertible T que permite la transformacion
de una representaciéon en el espacio de estado en una representacion
equivalente (similar), la cual conserva las propiedades bdsicas del modelo,
tales como la ecuacion caracteristica, los valores y vectores propios (seccion
1.8.3), la matriz de transicién del estado, la controlabilidad y la observabilidad.
El requisito de invertibilidad de una matriz cuadrada es equivalente a que sea
de rango completo (rango igual al nimero de filas o columnas). Sin embargo,
una matriz puede ser de rango completo y tener filas o columnas muy
similares, lo cual significa que estd mal condicionada.
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El ndmero de condicién cond (M) de una matriz es un valor que indica qué
tan cerca estd una matriz de tener filas o columnas linealmente dependientes.
Un valor cercano a 1 indica que la matriz estd bien condicionada, pero entre
mas grande sea ese nimero mas mal condicionada estd y mas sensibles son los
resultados, que impliquen su inversa, a pequefos cambios de la matriz
original. Por lo tanto, en los problemas que requieren del cédlculo del rango se

debe realizar también un cdlculo del nimero de condicién. Calculo con
MATLAB:

cond_number = cond(A, p) % p es el tipo de norma (por defecto p = 2)

Algunas transformaciones lineales permiten convertir el modelo a una
estructura llamada forma candnica que puede tener ventajas en cierto tipo de
problemas. Sea la siguiente ecuacién de estado a transformar:

{x=Ax+Bu (1.100)

y = Cx + Du

Se puede realizar la transformacién de las variables de estado de la
siguiente manera (en muchos textos se utiliza x = Tx"):

x*(t) = Tx(t), x(t) =T 'x*(t) (1.101)
Reemplazando (1.100) en (1.101) se obtiene:
{X* = A*x* + B*u
y = C*x* + D*u (1.102)
A*=TAT! B*=TB, C-=CT!, D*=D

Los modelos (1.100) y (1.102) son diferentes en forma, pero tienen los
mismos vectores de entrada y salida (sin asteriscos). Se puede ver, por
ejemplo, que la ecuacidn caracteristica y los valores propios (secciéon 1.8.3) no
cambian con la transformacién (sin embargo, dos matrices que tengan la
misma ecuacién caracteristica no son necesariamente similares, dado que se
pueden diferenciar en las matrices B, C o D):

M — A*| = |]\I— TAT!| = [ATT ' — TAT | = |[T(A\I — A)T|
= |T||AI — A[|T~!| = |AI — A
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Aunque la matriz T se puede seleccionar de manera arbitraria (con la Gnica
condicion de ser invertible), lo mas atil es definir dicha matriz de manera que
se obtengan formas especiales de la ecuacion de estado, algunas de las cuales
se explican a continuacion.

LLa forma canénica diagonal (FCD) es aplicable cuando los valores propios
(seccion 1.8.3) de la matriz A son reales y tienen una multiplicidad
geométrica igual a la multiplicidad algebraica (seccion 1.8.3), es decir, cuando
todos los vectores propios son linealmente independientes. Esta forma es
interesante pues permite desacoplar los diferentes estados del sistemay tratar
cada uno por separado como una ecuacion separada. la respectiva
transformacion tiene la siguiente forma, donde v, es un vector propio:

T=[Vi Vg - Vn]—l (1.103)

>

0o

o O
o O O

(1.104)

0]
RN

n

En la nueva representacion la matriz A* tiene la forma dada en la ecuacion
anterior.
Por ejemplo, el siguiente sistema se puede llevar a la forma diagonal:

3 —10 —4
X = {2 —6 —2} X
2 -4 =3

Los valores y vectores propios son:

LLa matriz de transformacion es:

1 2 477t 1 -2 0
T=[V1 Vo Va]—lzlo 1 2] :[2 -3 —2]
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LLa matriz A* en la forma candnica diagonal toma la siguiente forma:
-1 0 O
A*=TAT'=|0 -2 0
0o 0 =3

Si la multiplicidad geométrica de una raiz multiple es igual a su
multiplicidad algebraica, entonces el modelo también se puede diagonalizar,
tal y como se muestra en el siguiente ejemplo, donde mg = n — rank(AI —

A) =2 =ma.
3 -8 —4
x=12 =5 =2|x
1 -2 -2

Los valores y vectores propios son:

2 1 4
A={-1,—-1,-2}, v, = [1} , Vo = [0] , Vg = [2]
0 1 1

La matriz de transformacion es:

2 1 471! 2 -3 -3
T=[Vi Vy V3]1=[1 0 2] =[1 -2 0]
0 1 1 -1 2 1

[La matriz A* en la forma candnica diagonal toma la siguiente forma:

-1 0 0
0 -1 O

0 0 -2

A* =TAT '=

Cuando se tienen raices multiples con multiplicidad geométrica diferente
de la multiplicidad algebraica, o se tienen raices complejas, se obtiene la
llamada forma canénica de Jordan (FC]J), una forma cuasidiagonal con bloques
sobre la diagonal (los bloques de Jordan). LLa forma canénica diagonal es un
caso especial de la forma canénica de Jordan. Por ejemplo, para una raiz A,
real de multiplicidad 3 (se adiciona un 1 a la derecha de las primeras raices),
dos raices complejas (o + i3, parte real en la diagonal principal y parte
imaginaria sobre la otra diagonal) y raices reales sin repetir, se tiene, con la
misma matriz de transformacién (1.103), la siguiente forma:
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A, 1 0 0 0 0 0 07

0O A I 0 0 0 0 0

0 0 A 0 0 0 0 0

0 0 0 a B 0 O 0
A*=TAT'=|0 0 0 8 a 0 0 0| (1.105)

0 0 0 0 0 A O 0

0 0 0 0 0 0 X 0

LO 0 0 0 0 0 0 - A,

En el bloque de Jordan para raices reales multiples, si algunos vectores
propios son linealmente independientes, entonces algunos unos sobre la
diagonal desaparecen. En términos de la funcién de transferencia, si se tienen
raices reales sin repetir, entonces se obtiene una funcién de transferencia que
se puede desarrollar en fracciones parciales simples; si hay raices multiples no
se obtienen fracciones simples, sino una fraccién del tipo 1/(s + \)*, la cual
se puede representar como el producto de fracciones que al llevarlas a una
ecuacion de estado genera un bloque de Jordan con los unos sobre la diagonal
principal. El siguiente ejemplo ilustra dicha situacién, donde el tercero vector
es un vector propio generalizado, dado que mg = n —rank(AI — A) =1 <

—-6 11 —6
k:[—i’) 6 —4}){

-2 5 4

ma.

Los valores y vectores propios son:

4 1 3
A= {_27 _17 _1}’ Vv, = [2:| y Vo = [1] , Vg3 = [2]
1 1 1

La matriz de transformacion es:

4 1 31t 1 -2 1
T=[V:1 Vs Vg]—1:[2 1 2] :[0 —1 2]
1 1 1 -1 3 -2

LLa matriz A* en la forma candnica de Jordan toma la siguiente forma:
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-2 0 0
A*=TAT ! = [O —1 1]
0 0 -1
En el caso de raices complejas, para llegar al bloque de Jordan de Ia
ecuacion anterior €s necesario tomar como vectores propios la parte real y la
parte imaginaria del vector propio complejo, dado que de lo contrario se

obtendrd una forma candnica de Jordan con valores complejos sobre la
diagonal. Por ejemplo (el segundo vector propio es la conjugada del primero):

X = [—21 BL]X

Los valores y vectores propios son:

A (el 4ilei}, v [—31— z] v, = [—31+ @}

LLa matriz de transformacion con valores complejos es:
4 _[-3—i —3+4]7'_[05i 05415
T=[v, Vo!= [ ] - [ ]
A 1 1 —0.5i 0.5 — 1.5
La matriz A* en la forma canénica diagonal con valores complejos toma la

siguiente forma:

_ -1+ 0
A" =TAT ' = | |
0 —1—1
Si se toma la parte real y la parte imaginaria del vector propio (con cualquier
signo) se obtiene:

T = [Re{v,} Im{v,}]"' = [_13 (1)]_1 - [(1) 513}

A = TAT ! = [_1 _1]
1 -1

En la seccion 4.10.5 se presentan otras dos formas canénicas, con otro tipo
de aplicaciones: forma candnica controlable y forma canénica observable. El
disefio a partir de cualquiera de las formas candnicas implica la
implementaciéon o simulacion con el sistema original y la aplicacién de la
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ecuacion (1.101) cuando se realimente el estado, tal y como se muestra en la
Fig. 4.17.

Ver los ejercicios resueltos [4] 1.23 y 1.24, y los gjercicios propuestos [5]
1.24 en la web del libro.

u(k) | x(k) | y(k)

———>»  PLANTA —> ¢ —

x" (k)
- T -

Fig. 1.24 Implementacion de un controlador con una forma candnica

1.8.8 Polos y ceros de sistemas MIMO a partir de la ecuacion de estado

En la seccion 1.4.2 se presenta el concepto de polos y ceros para sistemas
representados por una matriz de funciones de transferencia y se muestra las
dificultades en el caso MIMO, sin profundizar en los detalles matematicos.
Alli se explicé que cuando se tiene una matriz de funciones de transferencia
los polos y ceros no son generalmente aquellos de cada una de las funciones
de transferencia y es necesario realizar algunos célculos adicionales. En esta
seccion se amplian dichos conceptos para sistemas multivariables (MIMO),
con base en lo expuesto en [14] [19], incluyendo una interpretacién de estos,
pero realizando los célculos con MATLAB (en la referencia se encuentra la
solucion analitica a los ejemplos propuestos). Se muestra ahora el calculo de
los polos y ceros a partir del modelo en el espacio de estado. Como ya se ha
expresado, los polos determinan la estabilidad del sistema lineal vy
corresponden a los valores propios (secciéon 1.8.3) de la matriz A. Ahora la
atencion se centra en el calculo de los ceros de un sistema MIMO. El cilculo
de dichos valores de bloqueo para una representacion en el espacio de estado
parte de la siguiente realizacién minima y su transformada de Laplace (con
condiciones iniciales iguales a cero):

{5{ = Ax + Bu {(SI—A)X(S) —BU(s) =0
y = Cx + Du CX(s)+DU(s) = Y(s)
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En forma matricial:

N BR-R e[ 3

Entonces, un cero es un valor s = z; en el cual la matriz P(s) disminuye
su rango, por lo cual para alguna entrada no nula de la forma p_e*‘u (t) y
ciertas condiciones iniciales la salida no contendrd el término e**, donde p,
es cierto vector. Los ceros se calculan resolviendo el siguiente problema de
valores propios generalizados:

[(SI—A) —B] [X(s)] _0

C D 1 [U(s)

(S [I 0] B [A BD [X(S)] _0
0 0 C DI/ [U(s)

Se observa que mientras los polos dependen de la matriz A, los ceros
dependen de las matrices [A,B,C,D]|. Los ceros de transmisién
corresponden a una realizacién minima (después de la cancelacion de polos y
ceros, si la hay). Los ceros invariantes son los ceros de una realizaciéon no
minima. Si no hay cancelacién de polos y ceros (el sistema es controlable y
observable), los ceros invariantes y de transmisidn son equivalentes. Los polos
y ceros en sistemas multivariables tienen ademds una direccion dada por los
respectivos vectores propios de (1.106). Un modelo no tiene ceros st C =
I,D =0, es decir, cuando las salidas contienen informacién directa de los
estados. Este hecho es importante en el disefio de sistemas de control por
realimentacién del estado (seccion 4.9), donde no hay preocupaciéon por la
ubicacion de los ceros. Los ceros pueden aparecer cuando el nitmero de entradas o

salidas es diferente del niimero de estados o cuando D # 0. Sea la siguiente matriz
de funciones de transferencia:

(1.106)

1 (s—1)(s+2) 0 (s —1)?
(s+1D(s+2)(s—1)[—(s+1)(s+2) (s—1)(s+1) (s—1)(s+1)

G‘3:

Polos = {—1,1,—2,—2}, Ceros invariantes = {—1,1,1}

La respectiva realizacién minima de la ecuacién de estado calculada con
MATLAB es (la funcién tzero da realmente los ceros invariantes):
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G=tf({[11-2] 0 [1-21];-[132] [10-1] [10-1]},[12-1-2]); S = s5(G); Smin = ss(G, 'min');
polosl = pole(S); cerosl = tzero(S); polos2 = pole(Smin); ceros2 = tzero(Smin);

poleosl = polos2 =
1.0000 -1.0000
-1.0000 1.0000
—-2.0000 cerosl = -2.0000
1.0000 -1.0000 + 0.0000i —2.0000

—-1.0000 1.0000 + 0.00001i ceros2 =
—2.0000 1.0000 — 0.00001 1.0000

Los polos de la realizacion minima son {—2,—2,—1,1} v el cero de
transmisiéon es {1}, mientras que los polos y ceros invariantes son
{—2,—-2,—1,—1,1,1} y {—1,1,1}, con lo cual se observa una cancelaciéon de
dos polos y dos ceros. Aunque no se calculan los vectores de direccion, deben
ser los adecuados dada la cancelacion.

1.9 Relacion entre representaciones de sistemas dindmicos

Cada una de las tres representaciones vistas anteriormente tiene sus ventajas
y por eso es importante conocer las relaciones entre ellas, las cuales se
muestran en la Fig. 1.25 y se explican a continuacion.

Ecuacion
diferencial (1) variables de fase

// (diferencias) (2) Sustitucién de
Py variables
1~ 7 (3) (3) Transformada
e // (4) Transformada
/ /(2) (4) inversa
/ // (5) Férmula
/ / (6) Descomposicion
L (5)

Funcidn de
transferencia

Espacio de estado -

(6)

Fig. 1.25 Relacion entre los métodos de modelacion matemética (algunos aplican solo a
modelos lineales)

Relaciones:

(1) Transformacién de una ecuacién diferencial o en diferencias al espacio de
estado. En este caso se utiliza el método de las variables de fase expuesto
en la seccion 1.8.2. EI método es aplicable tanto a sistemas lineales como
no lineales.
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(2) Transformacion del espacio de estado a una ecuacion diferencial. Este caso
es de poco interés, pero el método general consiste en derivar las
ecuaciones de estado y reemplazarlas unas en otras hasta obtener una sola
ecuacion diferencial del mismo orden de la ecuacion de estado. El método
mas simple para sistemas lineales consiste en pasar de la ecuacién de
estado a la funcién de transferencia y de alli a la ecuacién diferencial. El
caso no lineal es mas complejo.

(3) Transformacién de una ecuacién diferencial o en diferencias a una funcién
de transferencia. En este caso se aplica la transformada de Laplace o z y
se asumen condiciones iniciales iguales a cero (lo cual se logra si se trabaja
alrededor de un punto de equilibrio, tal y como se explica en la seccion
3.4). El método se explica en la seccion 1.4.1.

(4) Transformacion de una funcién de transferencia a una ecuacion diferencial
o en diferencias. Aqui se aplica la transformada inversa de Laplace o z para
llegar a una ecuacién diferencial o en diferencias con condiciones iniciales
iguales a cero, lo que equivale a un punto de equilibrio (solo y(0) puede
ser diferente de cero). El método se explica en la seccion 1.4.1. Por
ejemplo:

Y(s) c
U(s) s2+as+b’

G(s) = (s> +as+b)Y(s) = cU(s)

G+ ay+by =cu(t), y(0)=0,9(0)=0

(5) Transformacién del espacio de estado a una matriz de funciones de
transferencia. En este caso se obtiene una férmula explicita aplicando la
transformada de la ecuacién de estado, con un cambio de variables que
garantice condiciones iniciales iguales a cero, y se despeja la transformada
de la salida:

{)’c = Ax + Bu {SX(S) —x(0) = AX(s) + BU(s)
y = Cx + Du Y(s) = CX(s)+DU(s)

Despejando X (s) y reemplazando en Y (s):
Y(s) = C(sI — A)"'BU(s) + DU(s) = [C(sI — A)"!B + D]U(s)

De esta manera, la matriz de funciones de transferencia a partir de la
ecuacion de estado es:
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G(s)=C(sI—A)"'B+D (1.107)

Para el caso discreto:

G(z)=C(z:I-®)'T+D (1.108)

Ejemplo para un sistema MISO (Multiple Inpur Single Output):
o [—5 —1 2 1 3
)= T[x0+[F Jum,  y=0 2x
125 4+ 59 s+ 34
(s+2)(s+4) (s+2)(s+4)

G(s) = C(sT—A)'B+D = [

Cilculo con MATLAB:
‘ S=ss([-5-1;3-1], [2 1;5 3], [1 2], [0 0]); G = tf(S);

(6) Transformacién de una funcién de transferencia o matriz de funciones de
transferencia al espacio de estado. A esta transformacion se le denomina
descomposicién de la funcién de transferencia. El siguiente ejemplo
muestra dicha transformaciéon con MATLAB para un sistema MIMO
(Multiple Inpur Multiple Outpur):

G(s) [ 12s + 59 7s + 34 }
S) =

(s+2)(s+4) (s+2)(s+4)
‘ G = tf({[12 59],[7 34]},[1 6 8]); S = ss(G);

e [0 —2] .t [3.688 2.125
4 -6 3 175

u(t>7 Y= [O 4]X

Esta ecuacion de estado es similar a la del ejemplo anterior, lo cual se
puede observar por simulacion o por el cilculo de la matriz de
transformacion que relaciona los dos modelos. En el primer caso el cédigo
es:

S1=ss([-5-1;3-1],[21;5 3], [12],0); G=tf({[12 59],[7 34]},[1 6 8]); S2 = ss(G); step(S1,S2)

Nota: todos los modelos de MATLAB (funcién de transferencia y
ecuacion de estado) asumen que la unidad de tiempo es el segundo. Sin
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embargo, si se quieren cambiar las unidades se puede utilizar el comando
chgTimeUnit 0 cambiar la propiedad de tiempo con G.TimeUnit.
Ver los ejercicios propuestos [5] 1.23 en la web del libro.
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Modelo interno, 68

Modelo matemadtico,
108

Modelo mixto (modelo
caja gris), 108

Modelo no causal, 55
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Modelo nominal, 115,
142

Modelo teérico o
fenomenolégico
(modelo caja blanca),
108

Modelos exploratorios,
108

Modos de un sistema,
368

Mobnico, 324

MSE (mean squared
error, error cuadratico
medio), 356

Muestreo, 42

Muestreo de hipercubo
latino, 148

Muestreo irregular, 42

Muestreo
monofrecuencia, 42

Muestreo
multifrecuencia, 42

Muestreo normal, 148

Muestreo regular, 42

Muestreo uniforme, 148

Multiplicidad algebraica
(ma), 79

Multiplicidad
geométrica (mg), 79

Nilpotente, 296

Nivel de confianza, 384

Nivel de cuantificacion,
45

Nivel de significancia,
384

No amortiguado, 218

Nodo, 125

Nodo de entrada o
fuente, 125

Nodo de salida o
sumidero, 125

Nodo estable, 172

Nodo inestable, 173

Norma euclidiana, 256

Norma-, 256

Normalizacién, 140

Nuamero de condicién,
92

Observabilidad, 295

Observable, 299

Observable de estado
completo, 299

Observador actual, 395

Observador de estado,
393

Observador de
Luenberger, 396

Observador de orden
reducido, 396

Observador de
prediccién, 394

OE, 330

oel54, 331

offset, 268

One-factor-at-a-time,
OAT, 153

Operador, 322

Operador de
desplazamiento hacia
atras, 128, 321

Operador de
desplazamiento hacia
delante, 321

Operador de
transferencia, 322

Optimizacién, 256, 344

Orden, 6, 68

Orden de excitacién
persistente, 368

Orden relativo, 52, 57

Oscilaciones ocultas, 46

Pardmetro, xix

Pardmetro concentrado,
6

Pardmetro de
bifurcacion, 183

Pardmetros estimados
de control, 387

Paso del método
numérico, 131

Pensamiento
matematico, xvi

Periodo de muestreo, 42

Periodo de repeticién,
371

Periodo del reloj, 371

Periodograma, 239

Perturbacién, xiv

Pico de resonancia, 235

PID, 267

PID ideal o estdndar,
270

PID ideal o estandar con
derivada filtrada, 270

Planificacién
experimental, 316

Polinomio auxiliar, 199

Polo dominante, 30

Polos, 29

Polos insignificantes, 30

Polos y ceros estables,
33

Porcentaje de ajuste,
376

PRBS, 372

Precision estacionaria,
255

Prediccién, 113

Predictor corrector, 393

Predictor de Smith, 277

Predictor 6ptimo, 357

Predictor-corrector, 390,
399

Preprocesamiento de
datos, 373

Principio, xiii

Principio de dualidad,
395

Principio de parsimonia,
375

Principio de separacion,
285
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Principio de
superposicion, 177
Priorizacién de los
factores, 143
Problema de valor
inicial, 11
Procesamiento de datos
(senales), 373
Proceso, xiv
Proceso estocidstico, 309
Proceso estocastico
estacionario, 324
Procesos de la
matematica, xvi
Producto de Cauchy, 86
Pronéstico, 114
Propagacién de errores,
143
Propagacién del error,
146
Propiedades estadisticas
del método de
minimos cuadrados,
349
Prototipado Evolutivo
por Desarrollo
Incremental, 248
Prototipado riapido de
software, 135
Prototipo, 135
Prueba de blancura
(whiteness test), 379
Pseudocodigo, xv, 259
Pseudofrecuencia, 221
Pseudoinversa, 348
Punto critico, 170
Punto de equilibrio, 170
Punto de equilibrio
asintéticamente
estable, 191
Punto de equilibrio
asint6ticamente
estable global, 196
Punto de equilibrio

estable, 172, 191
Punto de equilibrio
hiperbdlico, 175
Punto de equilibrio
inestable, 172
Punto de operacion, 186
Punto de operacion de
estado estacionario,
170
Punto de ruptura, 212
Punto de silla, 174
Punto fijo, 170
Raices caracteristicas, 17
Rama, 122, 125
Rango, 37
Rango completo, 91
Razén de
amortiguamiento, 218
Razén de caida, 223
Razén de corte, 231, 236
RBS, 371
Realimentacion, 253
Realimentacion
(feedback), 119
Realizacién minima, 36,
98
Recoleccidon de datos,
317
Reconstruccién, 59
Recursividad, 46
Rechazo de
perturbaciones, 255
Region de atraccion,
182,192
Regulabilidad del
proceso, 274
Requerimientos de
diseno, 255
Residuos, 328, 377
Resonancia, 225
Respuesta al impulso, 66
Respuesta estacionaria,
214
Respuesta frecuencial,

225

Respuesta frecuencial
experimental, 341

Respuesta transitoria,
214

Resultado de
aprendizaje, xvi

Retardo, 28, 71

Retardo discreto, 127

Retardo intrinseco, 58

Retardo puro, 58, 71,
216, 218

Retardo puro (#), 56

Retardo total, 58

Retenedor de orden cero
(ZOH), 59

Retrato de fase, 169

Rizado intermuestreo,
46

RLS, 366

Robustez, 143, 255

Ruido, xiv

Ruido blanco, 324

Ruido blanco gaussiano,
325

Ruido blanco uniforme,
325

Ruido coloreado, 325

Ruido de cuantificacion,
45

Runge-Kutta, 131

Salida, 6

Saturacién (windup),
267

Saturaci6n del
integrador (windup),
279

Secuencia binaria
aleatoria (RBS), 371

Secuencia binaria
pseudoaleatoria
(PRBS), 372

Secuencia de
ponderacién, 66
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Seguimiento de la sefal
de control, 280

Semiplano izquierdo, 30

Sensibilidad, 143

Sensor, 258

Senal, xiv

Senal analégica, 109

Senal continua, 108

Seiial cuantificada, 108,
109

Senial cuasiestacionaria,
325

Sefial de datos
muestreados, 59, 109

Senal de tiempo
continuo, 109

Senal de tiempo
discreto, 109

Senal digital, 109

Senal discreta, 109

Senal persistentemente
excitada (pe), 368

Serie de Fourier, 237

Serie de Taylor, 187

Serie de tiempo, 323

Sesgo, 318

Setpoint. Véase Variable
de referencia

SIMO (Single Input
Multiple Outputs), 28

Simulacién, 110

Simulacién en tiempo
de maquina, 111

Simulacién en tiempo
real, 111

Simulacién hardware-in-
the-loop (HIL), 111

Simulacién hibrida, 103,
248

Simulacién human-in-
the-loop (HMIL), 112

Simulacién software-in-
the-loop (SIL), 111

Sinergia, 117

Sintesis, 249
Sintonizacién de un
controlador, 273
SISO, Single Input
Single Output, 26, 55
Sistema, xiil
Sistema aut6nomo, 6
Sistema
condicionalmente
estable, 244
Sistema de control, 118
Sistema de fase minima,
33,230
Sistema detectable, 300
Sistema dindmico, 1
Sistema estabilizable,
305
Sistema estdtico, 2
Sistema hibrido, 123
Sistema lineal invariable
en el tiempo (L'TT), 7
Sistema lineal variable
en el tiempo (LTI), 7
Sistema subactuado, 283
Sobreamortiguado, 218
Sobreimpulso maximo
porcentual, 223
Sobreparametrizacion,
320
Solapamiento del
espectro, 43
Solucién analitica, xvii
Solucién
complementaria, 15
Solucién de problemas,
xviii
Solucién general, 8, 15
Solucién numérica, xvii,
131
Solucién particular, 11
Solucién simbélica, 9
Solucién singular, 10
Soluciones factibles, 344
Spectral leakage, 343

Subamortiguado, 218

Subparametrizacion, 320

Sumador, 122

Superficie de Lyapunov
o superficie de nivel,
196

Supervision, 257

Sustituciones
progresivas, 90

T'écnicas antisaturacion
(antiwindup), 280

Teorema de Barbashin-
Krasovski, 196

Teorema de Cayley-
Hamilton, 287

Teorema de
convolucién, 66

Teorema de existencia y
unicidad, 16

Teorema de existencia y
unicidad de Picard, 14

Teorema de Fourier,
237

Teorema de muestreo
de Nyquist-Shannon,
43

Teorema del método
directo de Lyapunov,
195

Teoria de errores y
aproximacion, 145

Término independiente,
6,15

Tiempo de crecimiento,
222

Tiempo de escape, 178

Tiempo de
establecimiento, 223

Tiempo de pico, 223

Time update, 404

Tipo de sistema, 260

Transferencia suave
(bumpless transfer),
281
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Transformaci6n bilineal,
200
Transformacién de
similitud, 91
Transformacion lineal,
91
Transformada de
Fourier, 237
Transformada de
Fourier discreta, 342
Transformada de
Laplace, 20
Transformada inversa de
Laplace, 24
Transformada z, 50
Transformada z inversa,
55
Transformada z
modificada, 52
Traslacion compleja
(propiedad de la
transformada de
Laplace), 24
Traslacion real
(propiedad de la
transformada de
Laplace), 24
Trayectoria de estado,

68
Validacioén, 113, 376
Validacién basada en la
prediccién, 377
Validacién basada en la
simulacién, 377
Validacién basada en un
horizonte de
prediccién, 377
Valores de bifurcacion,
184
Valores y vectores
propios, 77
Variable, 6
Variable controlada, 119
Variable de control, 118
Variable de error:, 118
Variable de
perturbacion, 119
Variable de referencia
(setpoint), 118
Variable dependiente, 6
Variable independiente,
6
Variables candnicas, 73
Variables de estado, 68
Variables de fase, 72, 75
Variables fisicas de

estado, 72
Variables incrementales
(linealizacioén), 187
Vector de entrada, 70
Vector de estado, 70
Vector de indices de
controlabilidad, 303
Vector de indices
observabilidad, 303
Vector de instrumentos,
351
Vector de parimetros,
328
Vector de regresion, 328,
345
Vector de residuos, 345
Vectores propios
generalizados, 79
Ventana de Hann, 343
Ventana de retraso, 343
Ventana rectangular, 343
Verificacion, 113
Windup, 279
Wronskiano, 18, 80
Zero-Order Holder,
7Z0H, 59
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