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Nomenclatura 

(𝐀,𝐁,𝐂,𝐃) 
Matrices del modelo continuo lineal en variables 

de estado.  

Dimensiones: (𝑛 × 𝑛), (𝑛 ×𝑚), (𝑝 × 𝑛), (𝑝 ×𝑚) 

(𝐴,𝐵,𝐶,𝐷) 
Polinomios de un modelo ARX, ARMAX, OE o 

Box-Jenkins 

𝐀−1 Inversa de la matriz 𝐀 

𝐀𝑇  Transpuesta de la matriz 𝐀 

argmin
𝑥
𝑓(𝑥) Valor de 𝑥 que minimiza la función 𝑓(𝑥) 

𝐶𝑟 Factor de cresta de una señal 

𝐶𝑢(τ) 

Autocovarianza de la variable 𝑢(𝑡):  

𝐶𝑢(τ) = 𝐸[𝑢(𝑡) − 𝜇𝑢][𝑢(𝑡 − τ) − 𝜇𝑢] 
Coincide con la autocorrelación si la media es igual 

a cero 

𝐶𝑢𝑣(𝜏) 

Covarianza cruzada de las variables 𝑢(𝑡) y 𝑣(𝑡): 

𝐶𝑢𝑣(τ) = 𝐸[𝐮(𝑡) − 𝜇𝑢][𝐯(𝑡 − τ) − 𝜇𝑣]
𝑇

 

Coincide con la correlación si las medias son 

iguales a cero 

cond(𝐀) Número de condición de la matriz 𝐀 

𝑑 = ⌊
τ

𝑇𝑠
⌋ 

Retardo puro discreto de un sistema dinámico a 

partir del retardo continuo τ del modelo continuo 

𝛿(𝑡 − 𝜏) 
Función delta de Dirac de tiempo continuo 

(definida en cada instante del tiempo en un 

intervalo determinado) 

𝛿(𝑘 − 𝑛) ≡ 𝛿𝑘,𝑛 
Función delta de Kronecker (𝛿𝑘𝑛) o función 

impulso unitario de tiempo discreto  

{
∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖0
∆𝑢 = 𝑢 − 𝑢0    

 
Variables incrementales con respecto al punto de 

equilibrio (𝐱0, 𝐮0) 
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𝑦 ̇ =
𝑑𝑦

𝑑𝑡
, 𝑦
(𝑛)
=
𝑑𝑛𝑦

𝑑𝑡𝑛
 

Derivadas ordinarias de orden 1 y orden 𝑛 con 

respecto al tiempo 

𝑒(𝑡), 𝑒(𝑘) 
Ruido blanco dado por una secuencia de variables 

aleatorias independientes.  

𝑒(𝑡), 𝑒(𝑘) 

Variable de error igual a la diferencia entre la 

variable de referencia y la variable de salida 

(variable controlada) de un sistema dinámico con 

realimentación: 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) 

𝑒𝑠𝑠 = lim
𝑡→∞
𝑒(𝑡) Error en estado estacionario o valor final de la 

variable de error 

𝜀(𝑡), 𝜀(𝑘) 
Error de predicción o innovación: 

 𝜀(𝑡) = 𝑦(𝑡) − 𝑦(̂𝑡) 

𝐸𝑣(𝑡),𝐸[𝑣(𝑡)] Esperanza matemática de la variable aleatoria 𝑣(𝑡) 

𝑒𝐀𝑡 ≡ 𝐈 +𝐀𝑡 +
(𝐀𝑡)2

2!
+ ⋯ 

Matriz exponencial (es solo una representación y 

debe interpretarse como una serie infinita de 

potencias) 

𝑓(𝑡) 
Función de tiempo continuo (definida en cada 

instante del tiempo en un intervalo determinado) 

𝑓(𝑘), 𝑓(𝑘𝑇𝑠) 
Función de tiempo discreto (se puede omitir el 

período de muestreo 𝑇𝑠 y asumir que está 

implícito) 

𝑓𝑠 =
1

𝑇𝑠
 Frecuencia de muestreo (Hz) 

𝑓𝑋(𝑥) 
Función de densidad de probabilidad de la variable 

aleatoria 𝑋 (PDF – “Probability Density Function”) 

𝐹𝑋(𝑥) 
Función de distribución (acumulada) de 

probabilidad de la variable aleatoria 𝑋 

ℱ{𝑢(𝑡)} = 𝑈(𝜔) Transformada de Fourier 

𝛗(𝑘),𝛗(𝑡) 
Vector de regresión en la estimación con mínimos 

cuadrados 

𝚽(𝑡) ≡ 𝑒𝐀𝑡 
Matriz de transición del estado, equivalente a la 

matriz exponencial 
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(𝚽,𝚪,𝐂,𝐃) 
Matrices del modelo lineal discreto en variables de 

estado. 

Dimensiones: (𝑛 × 𝑛), (𝑛 ×𝑚), (𝑝 × 𝑛), (𝑝 ×𝑚) 

Φ𝑢(𝜔) 
Espectro de potencia o densidad espectral de 

potencia de la función 𝑢(𝑘) 

𝐺(𝑠),𝐺(𝑧) 
Función de transferencia en la variable 𝑠 o 𝑧 
(continua o discreta) 

𝐆(𝑠),𝐆(𝑧) 
Matriz de funciones de transferencia en la variable 

𝑠 o 𝑧 (continua o discreta) 

𝐺𝑙𝑐(𝑠),𝐺𝑙𝑐(𝑧) Función de transferencia en lazo cerrado 

𝑖 =
√
−1 Número imaginario 

𝐈 Matriz identidad 

Im(𝜆) Parte imaginaria del número complejo 𝜆 

𝑘 

Variable de tiempo discreto (𝑘𝑇𝑠, 𝑘 = 0,1,2, . ..), 

donde el período de muestreo 𝑇𝑠 está implícito. En 

ocasiones se toma 𝑡 = 𝑘𝑇𝑠 

𝐾 Ganancia constante 

𝐾𝑝 
Constante de acción proporcional de un 

controlador PID 

𝐊 
Matriz de ganancias en un control estático de 

realimentación del estado 

𝐊(𝑘) 
Ganancia o matriz de Kalman 

ℒ{𝑓(𝑡)} = 𝐹(𝑠) Transformada de Laplace 

𝜆 = 𝛼 ± 𝑖𝛽 Raíz característica o valor propio 

𝑚 Número de entradas de un sistema dinámico 

𝐌𝑐 Matriz de controlabilidad 

𝑀𝐹  Margen de fase de un sistema dinámico 

𝑀𝐺 Margen de ganancia de un sistema dinámico 

𝐌𝑜 Matriz de observabilidad 
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𝑀𝑝 
Sobreimpulso máximo de la respuesta temporal con 

oscilaciones de un sistema dinámico  

𝑀𝑟 
Pico de resonancia de la respuesta frecuencial de 

un sistema dinámico lineal 

𝜇𝑣 = 𝐸𝑣(𝑘) 
Esperanza matemática, valor esperado o media de 

la variable 𝑣(𝑘) 

𝑛 
Orden de un sistema dinámico (número de 

variables de estado) 

𝑛𝑎 
Número de parámetros del denominador 𝐴(𝑞−1) 
de la función de transferencia discreta del modelo 

del proceso 

𝑛𝑏 
Número de parámetros del numerador 𝐵(𝑞−1) de 

la función de transferencia discreta del modelo del 

proceso 

𝑛𝑐 
Número de parámetros del numerador 𝐶(𝑞−1) de 

la función de transferencia discreta del modelo de 

la perturbación 

𝑛𝑑 
Número de parámetros del denominador 𝐷(𝑞−1) 
de la función de transferencia discreta del modelo 

de la perturbación:  

𝑛𝑘 
Retardo total discreto (orden relativo) de la 

función de transferencia: 𝑛𝑘 = 𝑑 + 𝑛𝑟 ≥ 1 

𝑁𝑝 
Número total de parámetros de una estructura de 

un modelo matemático 

𝑛𝑟 = 𝑛−𝑚 
Orden relativo de un sistema dinámico (diferencia 

entre el número de polos y ceros finitos) 

𝑁  
Número de datos en un experimento de 

estimación de parámetros 

𝑝 Número de salidas de un sistema dinámico 

𝑃  Período de una señal periódica 

𝐏 Matriz de covarianzas: 𝐏 = 𝐸(𝐯 − 𝜇𝑣)(𝐯 − 𝜇𝑣)
𝑇

 

𝐯𝑖 
Vector propio correspondiente al valor propio 𝜆𝑖: 

𝜆𝑖𝐯𝑖 = 𝐀𝐯𝑖 
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𝑝𝑒 Orden de excitación persistente de una señal 

𝑞, 𝑞−1 
Operadores de desplazamiento hacia delante y 

hacia atrás 

𝑟(𝑡), 𝑟(𝑘) 
Señal de referencia (setpoint) o señal deseada en un 

sistema en lazo cerrado. 𝑘 = 0,1,2, . . . , 𝑁 − 1 

𝑅𝑢(𝜏) 
Autocorrelación de la variable 𝑢(𝑡): 𝑅𝑢(𝜏) =

𝐸𝑢(𝑡)𝑢(𝑡 − 𝜏) 

𝑅𝑢𝑣(𝜏) 

Correlación cruzada de las variables 𝑢(𝑡) y 𝑣(𝑡): 
𝑅𝑢𝑣(𝜏) = 𝐸𝑢(𝑡)𝑣(𝑡 − 𝜏), donde 𝑅𝑢𝑣(𝜏) =

𝑅𝑢𝑣(−𝜏) 

Re(𝜆) Parte real del número complejo 𝜆 

𝑅𝑦
2
 Coeficiente de determinación de la variable 𝑦 

rank(𝐀) Rango de la matriz 𝐀 

𝑠 = 𝑖𝜔 Variable compleja de la transformada de Laplace 

𝜎𝑢
2 = 𝐶𝑢(0) 

Varianza
 

de la variable 𝑢(𝑘): 
 𝐶𝑢(0) = 𝐸[𝑢(𝑡) − 𝜇𝑢][𝑢(𝑡) − 𝜇𝑢]

𝑇
 

𝜎𝑣 Desviación estándar de la variable 𝑣(𝑘) 

𝑡, 𝑡 = 𝑘𝑇𝑠 
Tiempo continuo o tiempo discreto (en ocasiones 

se usa 𝑡 en lugar de 𝑘)  

𝑇𝑠 
Período de muestreo (se omite el subíndice cuando 

no hay opciones de confusión con la constante de 

tiempo) 

𝑇  
Constante de tiempo para un sistema equivalente 

de primer orden 

𝐓 Matriz de transformación lineal o de similitud 

𝑇𝑑 
Constante de tiempo derivativo de un controlador 

PID 

𝑇𝑖 
Constante de tiempo integral de un controlador 

PID 

𝑡𝑝 Tiempo de pico de la respuesta temporal 
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𝑡𝑟 Tiempo de crecimiento de la respuesta temporal 

𝑡𝑠 
Tiempo de establecimiento de la respuesta 

temporal 

tr(𝐀) Traza de la matriz 𝐀 

𝜏  
Retardo continuo de un sistema dinámico, el cual 

se introduce en la señal de entrada: 𝑢(𝑡 − τ) 

𝜃,̂ 𝜃0 
Vector de parámetros estimados y exactos de un 

modelo matemático 

𝑢𝑠(𝑡 − 𝜏) = {
0 0 ⩽ 𝑡 < 1
1 𝑡 ⩾ 1

 Función escalón unitario o de Heaviside 

𝐮(𝑡), 𝐮(𝑘) 
Vector de entradas de tiempo continuo o discreto 

de dimensión (𝑚× 1) 

𝐯(𝑡), 𝐯(𝑘) 
Vector de perturbaciones o ruidos de la medida de 

dimensión (𝑝 × 1) 

𝑉 (𝐱) Función de Lyapunov 

𝑉𝑁(𝜃), 𝑉 (𝜃) 
Función de coste (se omite el subíndice cuando no 

hay opciones de confusión con otra función) 

var𝑣 = 𝜎𝑣
2
 Varianza de la variable aleatoria 𝑣 

𝐰(𝑡),𝐰(𝑘) 
Vector de ruidos de las variables de estado del 

sistema (perturbaciones no medibles, dinámicas no 

modeladas) de dimensión (𝑛 × 1) 

𝜔 
Frecuencia angular de un movimiento periódico 

(rad/s) 

𝜔0 
Frecuencia angular no amortiguada de un 

movimiento periódico (rad/s) 

𝜔𝐵 
Ancho de banda (rad/s) de la respuesta frecuencial 

de un sistema dinámico lineal 

𝜔𝑐𝑓  Frecuencia de cruce de fase (rad/s) 

𝜔𝑐𝑔 Frecuencia de cruce de ganancia (rad/s) 

𝜔𝑁 = 𝜔𝑠/2 Frecuencia de Nyquist (rad/s) 
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𝜔𝑟 
Frecuencia de resonancia (rad/s) de la respuesta 

frecuencial de un sistema dinámico lineal  

𝜔𝑠 =
2𝜋

𝑇𝑠
= 2𝜋𝑓𝑠 Frecuencia de muestreo (rad/s) 

{𝑥1, . . . , 𝑥𝑛} Conjunto de variables de estado 

𝑥𝑖̃, 𝑢̃𝑗 
Variables escaladas (divididas por el máximo valor 

esperado de dicha variable) 

𝐱(𝑡), 𝐱(𝑘) 
Vector de estados de tiempo continuo o discreto de 

dimensión (𝑛 × 1) 

𝐱(0) 
Condición inicial del sistema dinámico de tiempo 

continuo o discreto 

𝐱̂(𝑘) Vector de estados estimados de dimensión (𝑛 × 1) 

𝐱0(𝑡), 𝐱0(𝑘) 
Variables de estado en un punto de equilibrio del 

sistema dinámico de tiempo continuo o discreto 

𝐲(𝑡), 𝐲(𝑘) 
Vector de salidas o respuestas temporales de un 

sistema dinámico de dimensión (𝑝 × 1) 

𝐲̂(𝑘), 𝐲̂(𝑡) 
Vector (𝑝 × 1) de salidas o respuestas temporales 

estimadas de un sistema dinámico en el instante 

discreto 𝑘 o 𝑡 

𝑦(𝑘 + 1), 𝑦(𝑘 + 𝑛) 
Diferencias finitas hacia delante de orden 1 y 

orden n  

𝑦(𝑘 − 1), 𝑦(𝑘 − 𝑛) Diferencias finitas hacia atrás de orden 1 y n  

𝑦∗(𝑡) Variable muestreada 

𝑦𝑠𝑠 = lim
𝑡→∞
𝑦(𝑡) Respuesta temporal en estado estacionaria o valor 

final de la salida 𝑦(𝑡) 

𝑧 = 𝑒𝑇𝑠𝑠 Variable compleja de la transformada z 

𝒵{𝑓(𝑘)} = 𝐹(𝑧) Transformada z 

𝒵𝑚{𝑓(𝑘)} Transformada z modificada 

𝜁 
Razón de amortiguamiento de un sistema dinámico 

lineal de segundo orden. 
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∗ Símbolo de convolución: 𝑓(𝑡) ∗ 𝑔(𝑡) 

|𝑧| = √Re2(𝑧) + Im2(𝑧) Magnitud del número complejo 𝑧 = 𝛼 + 𝑖𝛽 

‖𝐀‖ Norma de la matriz 𝐀 
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Prefacio 

El objetivo general del libro es identificar, enlazar y aplicar los principales 

conceptos, métodos matemáticos y herramientas de los sistemas dinámicos, 

la teoría de la estimación y los sistemas de control, por medio de la 

determinación matemática de las características básicas en problemas simples 

que permitan el desarrollo intuitivo de los temas, la determinación de las 

características complejas con ayuda de herramientas computacionales 

(MATLAB® y Simulink®) que integren los diversos métodos, y la aplicación 

a problemas de diversas áreas del conocimiento (sistemas en contexto). 

El área de los sistemas dinámicos ha penetrado prácticamente en todas las 

áreas de la ciencia y la tecnología, dado que permite abordar y manejar 

sistemáticamente aspectos de análisis, diseño, optimización y control. El área 

es transversal, por aplicarse a diferentes tipos de sistemas, y genérica, en 

cuanto a que utiliza métodos, técnicas y tecnologías de varias áreas de 

conocimiento bajo un enfoque sistémico basado en el modelo matemático. Un 

sistema se define como un conjunto de elementos unidos y en interacción (no 

necesariamente con un objetivo definido), y puede aplicarse a fenómenos 

materiales o abstractos (físicos, químicos, biológicos, ecológicos, económicos, 

sociales, matemáticos, entre otros). Todos los sistemas están compuestos por 

elementos, tienen una estructura, tienen sinergia e interactúan con su 

entorno. 

El enfoque de sistemas es un estudio interdisciplinario que proporciona 

una visión general para la solución integrada y holística de problemas de 

diversa naturaleza, con un énfasis en los patrones de cambio e interacciones, 

y la integración y transferencia de conocimientos, conceptos y principios de 

diversas áreas, reduciendo la duplicación del esfuerzo teórico. Un principio es 

una proposición o verdad fundamental aceptada a partir de la cual se inicia el 

estudio de las ciencias o las artes; son leyes de la naturaleza que no se pueden 

demostrar explícitamente, pero que se pueden medir y cuantificar observando 

los resultados que producen. La teoría de los sistemas dinámicos se integra en 

la cibernética, es decir, en la ciencia dedicada al estudio de los métodos de 

comunicación (transmisión y recepción de información mediante un código 

común entre el emisor y el receptor), control y autoorganización comunes a 

máquinas y organismos vivos. La información, por su parte, es un conjunto de 

datos organizados y correlacionados que se generan, almacenan, analizan, 
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interpretan o transmiten para formar un mensaje que reduce la incertidumbre 

y cambia el estado de conocimiento del receptor; un dato aislado no es 

información, como tampoco lo son datos no relacionados; para que aparezca la 

información debe haber un enlace entre los fragmentos de los datos. 

En el estudio de los sistemas dinámicos, es importante tener en cuenta 

que, aunque la mayoría de los sistemas dinámicos incluyen señales 

estocásticas (comportamiento aleatorio o al azar), una práctica común y 

exitosa consiste en considerar que los sistemas dinámicos son determinísticos 

(comportamiento que no depende del azar) y tratar las señales desconocidas 

e impredecibles como perturbaciones, analizando el impacto de las 

perturbaciones por medio de la simulación. En este contexto, un proceso es 

una operación o desarrollo natural progresivamente continuo, marcado por una 

serie de cambios graduales que se suceden uno al otro en una forma 

relativamente fija y conducen a un resultado o propósito determinados; es el 

sistema sobre el cual se concentra un estudio. Una señal es la representación 

física de una variable; a una señal le corresponde una variable y viceversa, por 

lo que en la mayoría de los casos pueden considerarse equivalentes y solo se 

diferencian por el contexto (señal en diagramas de flujo y variable en 

expresiones matemáticas). 

Una perturbación es una variable externa determinística o aleatoria, 

medible o no medible, no deseada y no manipulable, aplicada a un sistema y 

que afecta adversamente su comportamiento. A diferencia de una 

perturbación (aplicada en el canal de entrada), un ruido afecta una medición 

de una variable (canal de salida), mas no al sistema mismo. La relación 

señal/ruido es la relación que hay entre la potencia de la señal que se transmite 

y la potencia del ruido indeseado (también se puede dar como una relación 

ruido/señal); una relación ruido/señal pequeña minimiza el impacto negativo 

del ruido.  

De otro lado, la mayoría de los sistemas dinámicos son no lineales, es decir, 

no cumplen con el principio de superposición (sección 3.3.1) y no cuentan 

con métodos y herramientas de simple aplicación, por lo que el enfoque de 

aproximación lineal es ampliamente utilizado en ingeniería al generar modelos 

simples sobre los cuales se aplican métodos matemáticos muy bien definidos 

y exactos. La obtención de modelos matemáticos lineales en cierto intervalo 

de operación se realiza por medio de una operación llamada linealización 

(sección 3.4). En este libro se parte de una visión no lineal, pero se aplican 

métodos lineales en el análisis y diseño que luego se verifican en simulación 
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sobre el modelo no lineal. Esta es una característica que no es común en los 

textos de sistemas dinámicos y sistemas de control. 

En relación con el libro, entre sus características metodológicas están:  

• Énfasis en una visión sistémica de los temas y problemas, lo cual 

facilita la integración de los métodos con aplicaciones concretas. Es 

decir, se presentan los temas haciendo énfasis en los aspectos 

genéricos de un sistema específico en vez de sus particularidades. 

• Enfoque desde los sistemas no lineales, llegando finalmente a 

soluciones lineales importantes para todo ingeniero, pero volviendo al 

contexto no lineal de donde provienen, es decir, el análisis y diseño 

lineales se prueban sobre el sistema no lineal, generalmente en 

simulación. El enfoque no lineal es fundamental en la mayoría de los 

casos de estudio del capítulo 7. 

• Solución y verificación [1] de problemas con MATLAB (para la 

implementación de los algoritmos) y Simulink (para la simulación), 

con los respectivos archivos disponibles en el sitio web del libro [2]. El 

uso de MATLAB obedece a que el código es casi un pseudocódigo 

(lenguaje sencillo, informal y cercano al lenguaje coloquial que no 

puede ejecutarse en un computador, pero sí en el papel) y permite 

concentrarse en los aspectos de la implementación más que en los 

detalles del lenguaje y su compilación. Además, existe software 

alternativo y gratuito de MATLAB que se puede usar en muchos casos 

(Octave, Scilab). El uso de Simulink se justifica por la simplicidad para 

obtener diagramas bien documentados y con la posibilidad de separar 

el método numérico de la idea misma del modelo; de hecho, Simulink 

puede utilizarse como una herramienta visual de programación y a 

partir de sus diagramas se puede generar código en C y otros lenguajes, 

permitiendo incluso su uso en esquemas de control en tiempo real de 

procesos reales, donde el diagrama de Simulink se convierte en la 

interfaz gráfica de usuario. En este libro se utiliza la versión 2022b de 

MATLAB, por lo que el lector debe revisar los cambios 

correspondientes a las nuevas versiones y estar atento a las novedades 

en el blog del libro. El código presentado es simple y sin mucha 

documentación, para que el lector lo tome como punto de partida para 

la comprensión de la teoría. De este modo, el lector debe documentar 

cada programa. 



xvi 

• Énfasis en los conceptos y métodos de áreas afines (investigación, 

ciencia, pensamiento sistémico, matemáticas, educación), los cuales 

se introducen brevemente en el libro y se profundizan en la web del 

libro [2]. El lector debe revisar el índice al final del libro para 

identificar en que página se define un concepto. 

• Enfoque basado en competencias de aprendizaje en la introducción de 

los temas y en la propuesta de ejercicios con diferentes niveles de 

desempeño, con el desarrollo de diferentes tipos de pensamiento 

matemático (numérico, espacial, métrico, aleatorio y variacional) y de 

procesos generales de la matemática (solución de problemas, 

procedimientos matemáticos, modelación y simulación, comunicación 

de los resultados por medio de figuras y tablas adecuadas). Una 

competencia de aprendizaje es la capacidad de una persona para 

movilizar diversos tipos de recursos adquiridos (conocimientos, 

habilidades, actitudes, valores) para hacer frente a situaciones y 

contextos de la vida personal, social o laboral. Un resultado de 

aprendizaje se define en términos del nivel verificable y factible de 

conocimientos, habilidades y actitudes al final de una actividad 

curricular específica en un módulo del curso (las competencias definen 

el nivel de desempeño general). 

• Casos de estudio [3] de diversa naturaleza (sistemas dinámicos en 

contexto) en la web del libro (la descripción se da en el capítulo 7), de 

una manera que se integran diferentes temas y niveles de desempeño, 

enlazándolos con temas pasados (que permite el repaso y 

afianzamiento de competencias) y futuros (a modo de motivación). 

Los casos de estudio siempre incluyen pruebas de simulación en 

computador (capítulo 2) haciendo énfasis en asuntos de incertidumbre 

y sensibilidad en los parámetros (sección 2.10), de manera que se 

obtienen soluciones más útiles en la práctica y se está mucho más cerca 

de la implementación en el sistema real. 

• Ejercicios resueltos [4] en la web del libro con aplicación del método 

de solución de problemas, de manera que se pueda profundizar en la 

aplicación de la teoría y mejorar las habilidades de solución de 

problemas y utilización de MATLAB. Los ejercicios están clasificados 

de manera que se identifica fácilmente el tema o temas que tratan. 

• Ejercicios propuestos [5] y prácticas con MATLAB [6] en la web del 

libro, con una formulación que integra la teoría, el procedimiento de 

https://siscontexto.blogspot.com/2024/07/casos-de-estudio.html
https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/06/practicas-propuestas.html


xvii 

solución de problemas, la verificación [1] con MATLAB y la adecuada 

interpretación de resultados. No se indica la solución de cada 

problema, dado que se exige su verificación con MATLAB. Los 

ejercicios están clasificados de manera que se identifica fácilmente el 

tema o temas que tratan. 

• Sitio web del libro [2], el cual incluye recursos sobre cada tema del 

libro: espacio para formular preguntas y proponer respuestas, ejercicios 

resueltos y propuestos, prácticas con MATLAB, programas y recursos 

de MATLAB y Simulink, línea histórica de los sistemas dinámicos y 

sus temas afines dentro del contexto de la matemática, la ciencia, la 

tecnología, la computación y la teoría de sistemas.  

Para abordar este libro es necesario comprender los conceptos y métodos 

básicos del álgebra básica, trigonometría, álgebra lineal, cálculo diferencial, 

cálculo integral, cálculo en varias variables y números complejos. 

Adicionalmente, el lector debe manejar los elementos básicos de 

programación. Dada la importancia de las ecuaciones diferenciales y la 

transformada de Laplace, en el libro hay una sección donde se resumen sus 

principales conceptos y métodos descritos en términos de la variable 

independiente 𝑡 (tiempo) y no la variable 𝑥, como sucede en los libros clásicos 

de ecuaciones diferenciales.  

La introducción de cada capítulo contiene las ideas generales y 

prerrequisitos, un resumen de cada uno de los temas, preguntas generales, la 

competencia específica de aprendizaje del capítulo y los respectivos 

resultados de aprendizaje. Los ejercicios propuestos del capítulo 9 contienen 

problemas simples para su solución analítica y ejercicios un poco más 

complejos que integran varias competencias y requieren del uso de MATLAB. 

Se pide al lector aplicar la técnica de la solución de problemas y enlazar la 

teoría con los procedimientos computacionales (programas de MATLAB) para 

su mejor comprensión. 

La solución analítica de un problema matemático es una expresión 

matemática explícita en términos de funciones conocidas, la cual se obtiene 

aplicando de manera lógica ciertas operaciones específicas. La solución 

numérica es una solución en forma de números presentados por medio de 

gráficos o tablas. El análisis de la solución numérica se circunscribe solo a los 

valores específicos de los parámetros, es decir, solo se puede afirmar que un 

parámetro afecta cierta característica de un sistema si se cambia en cierto 

intervalo de estudio. La principal ventaja de la solución analítica sobre la 

https://siscontexto.blogspot.com/2023/06/practicas-propuestas.html
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numérica es su capacidad de generalizar los resultados sin tener que probar 

diversos escenarios; por ejemplo, la solución analítica de una ecuación 

diferencial muestra directamente el efecto de cada parámetro. 

La solución de problemas es el proceso de diseño, evaluación e 

implementación de una estrategia para responder una pregunta abierta o 

lograr el objetivo deseado. Pasos del método de solución de problemas, el cual 

se puede ajustar a un formato IMRAD (Introduction, Methods, Results, And 

Discussion) [7]: 1) Planteamiento y comprensión del problema 

(INTRODUCCIÓN). 2) Plan de solución (MÉTODOS). 3) Cálculo de la 

Resultados (solución). 4) Verificación [1] e interpretación de la solución 

(DISCUSIÓN). 

Las competencias genéricas para afianzar en este libro son: 

1. Aplicar conceptos y métodos matemáticos para representar y 

comprender mejor los sistemas dinámicos, problemas y procedimientos 

en distintos contextos y considerando sus características y propiedades. 

2. Resolver problemas con un enfoque formal para una mejor 

comunicación y argumentación de los resultados obtenidos, por medio 

de la documentación de cada uno de sus pasos en un formato IMRAD 

[7], de manera que se pueda organizar adecuadamente la información, 

separando el problema, los métodos (propios o de otros autores) y los 

resultados originales (resultados). La discusión se centra en la 

interpretación de los resultados, es decir, en la explicación o traducción 

del sentido y principios fundamentales de algo en un lenguaje diferente 

al original, de manera fiel y en un contexto o marco específico que la 

limita. A partir de una adecuada interpretación se da respuesta a 

preguntas del tipo “por qué”, es decir, se da sentido e importancia a los 

resultados observados: identificar con la razón lo que los ojos no ven. El 

conocimiento implica, de esta manera, la representación e 

interpretación de los hechos observados con una reducción de los 

errores e ilusiones inherentes a dicha proceso. No se debe confundir la 

interpretación con la descripción (proceso de obtención de las 

características relevantes y distintivas de algo o alguien de manera 

detallada y ordenada con un lenguaje apropiado y sin entrar en las 

relaciones de los componentes y relaciones causa-efecto). 

3. Aplicar herramientas computacionales para la solución de problemas, 

por medio del desarrollo de algoritmos y simulaciones documentados, 

claros y simples en MATLAB.  
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4. Aplicar el pensamiento sistémico en la modelación matemática y 

estructuración de problemas (sección 2.3) y sistemas para identificar 

aspectos comunes con otros modelos similares, por medio de diagramas 

de bloques de los sistemas con identificación de variables y parámetros. 

Un parámetro es una magnitud física constante que determina la 

estructura de un sistema mediante su valor numérico y que lo distingue 

de otro semejante, por lo que los parámetros determinan cómo las 

entradas se transforman en salidas; en un modelo matemático, estos son 

los valores que no son variables. Una magnitud física es una propiedad 

física que puede medirse (constante o variable). 

Las competencias específicas para desarrollar en este libro son: 

1. Formular diversas representaciones del modelo matemático de tiempo 

continuo y tiempo discreto de los sistemas dinámicos para comprender 

la influencia de los parámetros y condiciones iniciales en la forma de la 

solución y extraer información importante y diferente de cada una de 

ellas, por medio de su integración en la solución de problemas y casos 

de estudio. 

2. Implementar programas y simulaciones en MATLAB y Simulink para 

la solución numérica y comprensión del comportamiento (secuencia 

de estados de un sistema) de sistemas dinámicos lineales y no lineales 

a partir de su modelo matemático, considerando las limitaciones del 

modelo y el papel de las incertidumbres del modelo, por medio de la 

planificación de los experimentos de simulación, la documentación y 

organización adecuada de los programas, y la interpretación correcta de 

los resultados. 

3. Analizar el comportamiento de sistemas dinámicos no lineales de 

tiempo continuo y discreto alrededor de puntos de equilibrio de 

interés con diversos métodos matemáticos lineales, por medio de la 

linealización y la validación en simulación con el modelo no lineal. El 

análisis generalmente se basa en gráficos de la respuesta temporal o 

frecuencial del sistema ante diversas entradas, por lo que es muy útil 

saber bosquejarla antes de calcularla de manera exacta, lo cual 

demuestra una mínima comprensión del modelo. Bosquejar significa 

graficar aproximadamente la solución de un problema sin necesidad de 

utilizar las proporciones correctas, lo cual implica una comprensión 

adecuada de dicha solución. 
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4. Diseñar sistemas básicos de control lineal de tiempo continuo y 

discreto para el logro de requerimientos establecidos de 

comportamiento en lazo cerrado, por medio de métodos matemáticos 

y con la validación en simulación con el modelo no lineal. 

5. Aplicar procedimientos y algoritmos de base matemática para la 

identificación de modelos matemáticos lineales y la estimación de 

parámetros de modelos lineales y no lineales, por medio de una 

adecuada planificación experimental que incluye el procesamiento de 

los datos experimentales, la selección de la mejor estructura del 

modelo, la selección del método de estimación, los cálculos con 

MATLAB, la validación de los resultados y la adecuada documentación 

del modelo obtenido y sus parámetros. 

6. Diseñar un estimador del estado para la obtención de las variables 

desconocidas de un sistema dinámico no lineal cerca y lejos de un 

punto de equilibrio de interés y su uso en la implementación de 

sistemas de control, por medio de métodos matemáticos, 

implementación de algoritmos en MATLAB, pruebas en simulación 

sobre el modelo no lineal, y análisis y documentación de los resultados. 

El libro puede utilizarse en un curso de introducción a las ecuaciones 

diferenciales ordinarias con orientación a las aplicaciones y a la motivación, 

siguiendo ideas como las presentadas en [8]: (i) hacer énfasis en las 

ecuaciones diferenciales de orden superior y la ecuación de estado, las cuales 

son más cercanas a problemas reales; (ii) resaltar la importancia de los cambios 

de variables y las formas canónicas; (iii) enlazar los problemas no lineales con 

su aproximación lineal por medio de la linealización; (iv) aplicar métodos 

numéricos y simulación; (v) utilizar el método de la transformada de Laplace 

en el marco de la función de transferencia y el teorema de convolución; (vi) 

presentar ejemplos reales o cercanos a la realidad, mostrando la fase de la 

modelación matemática, la relación sistémica y gráfica entre los subsistemas, 

el análisis dimensional y una introducción a la modelación experimental con 

métodos simples; (vii) enseñanza de conceptos claves como la relación entre 

el orden de la ecuación diferencial y el número de integradores (diagrama de 

simulación), el efecto de los polos y ceros, la estabilidad, la relación entre la 

ecuación no homogénea y las variables exógenas del sistema, la aplicación del 

teorema de convolución, la relación entre diferentes representaciones de un 

modelo (ecuación diferencial, ecuación de estado, función de transferencia), 

el análisis en el plano de fase, las características no lineales, las características 



xxi 

temporales y frecuenciales, entre otros; (viii) resaltar la importancia del 

análisis de incertidumbre y la teoría de errores y aproximación (sección 2.10.1) 

en los problemas reales. 

Para terminar, el autor quiere agradecer a la Universidad EAFIT por su 

apoyo decidido a esta propuesta con las posibilidades que brinda de libertad 

de cátedra, descargas académicas para la preparación de material académico, 

períodos sabáticos y apoyo del Fondo Editorial. Igualmente, el autor agradece 

especialmente a los estudiantes de los cursos de Sistemas Lineales y 

Modelación Experimental del programa de Ingeniería Matemática, quienes a 

lo largo de más de 20 años le ayudaron a perfilar mejor los temas y orden del 

libro y a explicarlos de una mejor manera. Finalmente, el autor dedica este 

libro a Ami, Mario Alejandro y a todas las personas que lo han apoyado siempre 

con su amor y paciencia.



1 Fundamentos matemáticos de los sistemas 

dinámicos 

 

1.1 Introducción 

En este capítulo se presentan los principales métodos matemáticos para el 

estudio de los sistemas dinámicos. Algunos métodos, como las ecuaciones 

diferenciales ordinarias, la transformada de Laplace y la transformada z, se 

presentan de manera detallada en otros textos, pero aquí se dan únicamente 

los principales conceptos e ideas y se resuelven algunos ejercicios con el fin 

de tener acceso rápidamente a dichos métodos. No obstante, se invita a los 

lectores a recurrir a las referencias especificadas para profundizar en estos 

temas. Por el contrario, otros temas, como la función de transferencia y las 

ecuaciones en el espacio de estado, se presentan de manera extensa y 

completa. Si el lector conoce bien estos métodos matemáticos puede pasar al 

siguiente capítulo. Se recomienda al lector repasar los temas de álgebra 

elemental (polinomios, raíces de un polinomio, factorización), trigonometría, 

números complejos, cálculo diferencial, cálculo integral y álgebra lineal 

(determinantes, matrices, ecuaciones lineales, independencia lineal, valores 

y vectores propios, transformaciones lineales). 

Un sistema dinámico es un sistema de tiempo continuo (o discreto) con 

un número finito de grados de libertad
 

y que puede representarse 

matemáticamente por medio de ecuaciones diferenciales (o en diferencias) 

que dependen del tiempo. Un grado de libertad es cada uno de los 

movimientos básicos que definen completamente el cambio de un sistema. A 

cada grado de libertad le corresponde una variable. Por ejemplo, una partícula 

tiene seis grados de libertad (tres posiciones espaciales y tres velocidades de 

traslación); un cuerpo rígido tiene 12 grados de libertad (tres posiciones 

espaciales, tres posiciones de rotación, tres velocidades de traslación y tres 

velocidades de rotación); un ascensor tiene dos grados de libertad (una 

posición y una velocidad verticales); y un circuito eléctrico básico con un 

inductor y un capacitor tiene dos grados de libertad (corriente y voltaje). 

La existencia de una ecuación diferencial (o en diferencias) asociada a un 

sistema, la necesidad de especificar ciertas condiciones iniciales o la 
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dependencia de los valores pasados de las variables, son indicios de que el 

sistema es dinámico; se dice en estos casos que el sistema tiene memoria. Un 

sistema dinámico se caracteriza por su modelo matemático, diferentes tipos 

de variables, parámetros, condiciones iniciales y perturbaciones. Lo contrario 

a un sistema dinámico es un sistema estático, un sistema continuo o discreto 

que se puede modelar matemáticamente por medio de ecuaciones algebraicas 

que relacionan directamente las salidas con las entradas. Si no hay necesidad 

de especificar condiciones iniciales ni una dependencia de los valores actuales 

de las variables de sus valores pasados, entonces el sistema es estático; se dice 

en estos casos que el sistema no tiene memoria. 

Este capítulo inicia con un repaso de las ecuaciones diferenciales ordinarias 

lineales, cuya comprensión es la base para el estudio de los sistemas 

dinámicos. Aquí es necesario comprender muy bien lo que es la variable 

dependiente, la variable independiente, el término independiente, el orden 

de la ecuación, la solución de la ecuación homogénea (sin término 

independiente), la solución de la ecuación no homogénea (con término 

independiente), la solución general, la ecuación característica, las raíces 

características, la solución particular y el método de coeficientes 

indeterminados. Lo más importante es poder imaginar la forma de la solución 

de la ecuación diferencial a partir del valor de las raíces características y la 

forma del término independiente. 

Luego se desarrolla el tema de las ecuaciones en diferencias lineales de una 

manera análoga a las ecuaciones diferenciales utilizando los mismos conceptos 

y métodos, pero adaptados al caso discreto. Las ecuaciones en diferencias se 

obtienen al discretizar en el tiempo las ecuaciones diferenciales ordinarias con 

el fin de implementarlas en un computador digital. Aunque, en general, se 

recurre a la solución iterativa de las ecuaciones en diferencias por su facilidad 

para implementarse en un computador digital, se presenta también la solución 

analítica exacta para comprender mejor la forma de las soluciones. De esta 

manera, con la visión de la solución de las ecuaciones diferenciales y 

ecuaciones en diferencias lineales se tiene allanado gran parte del camino para 

el estudio de los sistemas dinámicos. Es importante resaltar que en el libro se 

desarrollan de manera paralela los métodos para sistemas de tiempo continuo 

y tiempo discreto dado que, en general, los métodos son equivalentes. No es 

necesario, por lo tanto, como se hace en otros textos, desarrollar primero el 

enfoque continuo y luego el discreto. 
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Existen diferencias entre una señal de tiempo discreto y una señal digital, 

y un proceso de discretización y uno de digitalización, pero en la práctica 

ambos conceptos se toman como equivalentes y solo se especifican mejor 

cuando es necesario. De hecho, en el Diccionario de la Real Academia 

Española solo aparece la palabra “digitalizar” y no aparece la palabra 

“discretizar”. En control, se puede discretizar un diseño final continuo o 

realizar un diseño basado en la discretización del modelo del proceso. En el 

primer caso (método indirecto), el diseñador trabaja siempre en tiempo 

continuo y al final, si se requiere una implementación discreta, discretiza la 

solución que obtuvo (los resultados deseados son muy parecidos si el período 

de muestreo es bastante pequeño). En el segundo caso (método directo), el 

diseñador discretiza el modelo del proceso (con un período de muestreo 

adecuado y correcto, no necesariamente demasiado pequeño) y realiza todo el 

proceso de diseño y análisis a partir del modelo discretizado; este es el mejor 

enfoque y el que brinda mayores posibilidades al diseñador. En la sección 1.5.2 

se discute la correcta selección del período de muestreo. 

Más adelante se presentan los temas relacionados con la transformada de 

Laplace (para resolver modelos continuos lineales con coeficientes constantes 

e interpretar el comportamiento en términos de la frecuencia) y la 

transformada z (para resolver modelos discretos lineales con coeficientes 

constantes e interpretar el comportamiento en términos de la frecuencia). 

Estas dos transformadas son la base de la función de transferencia. Como se 

verá, estos métodos permiten resaltar de manera explícita algunas 

características del modelo (como los polos y ceros) y resolverlo de una manera 

más simple. También se muestra la relación entre las variables 𝑠 y 𝑧 para 

enlazar las características del espacio continuo y el discreto. 

Finalmente, se explica la representación en el espacio de estado, el método 

más completo de modelación matemática y la base de los temas de simulación 

del Capítulo 2 (Modelación matemática y simulación de sistemas dinámicos). 

En el espacio de estado se obtienen la mayor información posible de un 

sistema dinámico. Aunque se presenta el método para sistemas no lineales, el 

énfasis se hace en el caso lineal, el cual se relaciona directamente con la 

función de transferencia y las ecuaciones diferenciales ordinarias. Los 

diferentes métodos de modelación matemática se deben utilizar 

adecuadamente para aprovechar lo mejor de cada uno, por lo que su 

equivalencia se muestra al final del capítulo. Sin embargo, es importante 
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aclarar que de los tres métodos de modelación solo la función de transferencia 

es específica para sistemas lineales. 

A pesar del fuerte componente matemático de este capítulo, el lector debe 

verlo como una oportunidad para repasar conceptos y métodos estudiados 

previamente, pero ahora enlazados con otros temas e incorporados en métodos 

computacionales y en simulaciones. Además, cada concepto puede tener ahora 

mucho más sentido que antes. Por ejemplo, la transformada de Laplace en el 

contexto de la función de transferencia tendrá más sentido al evidenciar 

muchas características importantes de los sistemas dinámicos; las raíces 

características ahora permiten visualizar la forma de la respuesta temporal de 

un sistema dinámico; la importancia de las transformaciones lineales se 

observa al resolver ecuaciones de estado desacoplando las variables. 

De esta manera, se invita al lector a pensar en respuestas tentativas a las 

siguientes preguntas: 

• ¿Qué aporta la matemática en el estudio de los sistemas dinámicos? 

• ¿Por qué existen diferentes enfoques de modelación matemática de 

sistemas dinámicos y qué ventajas tiene cada uno? 

• ¿Por qué no se pueden resolver analíticamente todas las ecuaciones 

diferenciales no lineales y qué implicaciones tiene esta realidad? 

• ¿Por qué es importante representar matemáticamente sistemas 

dinámicos de tiempo continuo y tiempo discreto, y cómo se relacionan 

ambos modelos? 

• ¿Qué representa físicamente el orden de una ecuación diferencial y, 

por lo tanto, del sistema dinámico, y qué significa que un sistema se 

pueda representar por modelos de orden diferente? 

• ¿Qué representa físicamente el retardo de un sistema dinámico y cómo 

se modela matemáticamente? 

• ¿Cuáles son las ventajas de la modelación de sistemas dinámicos por 

medio de las ecuaciones en el espacio de estado y qué sentido tiene 

una variable de estado?  

• ¿Por qué se deben resolver analíticamente los modelos lineales de 

sistemas dinámicos si existen herramientas computacionales que lo 

hacen de una manera muy eficiente?  

Las competencias de aprendizaje del capítulo son:  

• Aplicar conceptos y métodos matemáticos para representar y 

comprender mejor los sistemas dinámicos, problemas y 
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procedimientos en distintos contextos y considerando sus 

características, propiedades, ventajas y desventajas. 

• Formular diversas representaciones de tiempo continuo y discreto de 

los sistemas dinámicos para comprender la influencia de los 

parámetros y condiciones iniciales en la forma de la solución y extraer 

información importante y diferente de cada una de ellas, por medio de 

su integración en la solución de problemas y casos de estudio. 

Los resultados de aprendizaje que debe demostrar el lector al finalizar el 

capítulo son: 

• Identifica las características de una ecuación diferencial lineal y su 

solución, con el fin de entender el comportamiento de un sistema 

dinámico de tiempo continuo. 

• Identifica las características de una ecuación en diferencias y su 

solución, con el fin de entender el comportamiento de un sistema 

dinámico de tiempo discreto. 

• Aplica las propiedades de la transformada de Laplace a la solución de 

ecuaciones diferenciales lineales, con el fin de resolverlas de manera 

rápida y eficiente y obtener la función de transferencia. 

• Aplica la transformada z a la solución de ecuaciones en diferencias 

lineales, con el fin de resolverlas de manera rápida y eficiente y calcular 

la función de transferencia  

• Identifica las características básicas de la función de transferencia de 

un sistema dinámico lineal de tiempo continuo o discreto, con el fin 

de entender algunas características básicas del sistema. 

• Identifica las características básicas de las ecuaciones en el espacio de 

estado de un sistema dinámico lineal de tiempo continuo o discreto, 

para entender algunas características básicas del sistema. 

• Discretiza modelos matemáticos de sistemas dinámicos lineales a 

partir de sus distintas representaciones, para conectar las ventajas de 

los enfoques de tiempo continuo y discreto. 

• Relaciona los diferentes métodos matemáticos de modelación de 

sistemas dinámicos lineales, con el fin de encontrar sus características 

básicas desde diferentes puntos de vista. 
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1.2 Ecuaciones diferenciales de sistemas dinámicos lineales 

de tiempo continuo 

1.2.1 Conceptos 

Una ecuación diferencial es una ecuación que contiene derivadas [9]. Existen 

ecuaciones en derivadas ordinarias (EDO) y ecuaciones en derivadas parciales 

(EDP). Las ecuaciones diferenciales ordinarias, objeto de este libro, 

contienen derivadas ordinarias (𝑑𝑦/𝑑𝑡) y se aplican a sistemas con parámetros 

concentrados (no necesariamente constantes), es decir, a aquellos sistemas 

donde se puede considerar que un parámetro toma un valor puntual (masa, 

longitud, resistencia, tasa, etc.) que no cambio considerablemente durante el 

tiempo del estudio y no es necesario considerar su distribución en el espacio. 

La siguiente ecuación representa una ecuación diferencial ordinaria, donde 𝑦 
es la variable dependiente, 𝑡 es la variable independiente, 𝑛 es el orden de la 

ecuación diferencial (derivada de mayor orden en la ecuación) y 𝑓  es una 

función que relaciona las variables y derivadas: 

 
𝑓 (𝑡, 𝑦, 𝑦,̇ 𝑦,̈ . . . , 𝑦

(𝑛)
) = 0, 𝑦

(𝑛)
=
𝑑𝑛𝑦

𝑑𝑡𝑛
 (1.1) 

Por ejemplo, la siguiente es una ecuación diferencial de tercer orden: 

𝑦⃛ + 3𝑡(𝑦)̇2 + cos 𝑦 = cos 𝑡 

Una variable es una magnitud que cambia con el tiempo y puede tomar un 

valor cualquiera de un conjunto dado. Al término de la ecuación diferencial 

que no contiene la variable dependiente o sus derivadas se le llama término 

independiente. Por ejemplo, en la ecuación de arriba el término 

independiente es cos𝑡. Generalmente, el término independiente contiene la 

entrada del sistema, es decir, una variable exógena manipulable que se aplica 

para modificarlo de alguna manera. Se dice que un sistema dinámico es un 

sistema autónomo si no aparece de manera explícita la variable 

independiente; de manera similar, se dice que se tiene una ecuación 

diferencial autónoma. La solución de la ecuación diferencial corresponde a la 

salida del sistema, es decir, a la variable que representa un cambio observable 

y medible, generalmente como respuesta a una entrada. 
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Las ecuaciones diferenciales pueden ser lineales o no lineales. 

Matemáticamente, una ecuación diferencial es lineal si cada uno de los 

términos que contiene la variable dependiente es de grado 1, lo que significa 

que, al quitar los coeficientes y las derivadas de cada término, la variable 

dependiente aparece aislada. En el ejemplo de arriba, en el segundo término, 

después de quitar la derivada, la variable dependiente 𝑦 está elevada al 

cuadrado, por lo que ese término es de grado dos. En el tercer término, la 

variable dependiente está dentro de la función coseno, la cual se puede 

descomponer en una serie infinita de Taylor dada por la ecuación (3.4), por lo 

que el término es de grado infinito. 

Físicamente, una ecuación diferencial es lineal si cumple con el principio 

de superposición (sección 3.3.1). Se puede determinar experimentalmente si 

un sistema estable es o no lineal aplicando una entrada constante, observando 

en qué valor se estabiliza, variando esa entrada constante y trazando una curva 

por medio de los puntos obtenidos: si es una línea recta, el sistema es lineal o 

lo es en una región determinada. Si el sistema es inestable es necesario 

estabilizarlo por medio de un controlador. 

En el caso de las ecuaciones diferenciales ordinarias lineales, estas pueden 

ser con coeficientes constantes (lineal invariable en el tiempo, Linear Time 

Invariant, LTI) o con coeficientes variables (lineal variable en el tiempo, 

Linear Time Variant, LTV), siendo las primeras las que se pueden resolver 

analíticamente en término de funciones elementales. Un sistema LTI es un 

sistema lineal en el cual ante una entrada con un retardo la salida es la misma 

sin retardo, pero desplazada en ese tiempo de retardo; es decir, la salida es la 

misma sin importar el momento en el que se aplica la entrada. 

La solución analítica de la ecuación diferencial está dada por un conjunto 

de funciones definidas en cierto intervalo tales que al derivarlas satisfacen la 

ecuación diferencial. En las siguientes secciones se estudia la manera de 

resolver algunas ecuaciones diferenciales. Las ecuaciones LTI siempre se 

pueden resolver y las ecuaciones LTV se resuelven por medio de series de 

potencias (no se estudian en este libro). No existen métodos generales para 

resolver las ecuaciones diferenciales no lineales y normalmente se obtiene solo 

la solución numérica. 
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1.2.2 Ecuaciones diferenciales de primer orden con variables separables 

Muchos problemas se pueden modelar por medio de ecuaciones diferenciales 

de primer orden, por lo que a continuación se presentan algunos casos 

especiales de ecuaciones lineales y no lineales. En el caso no lineal existen 

algunas formas especiales que se pueden resolver analíticamente (variables 

separables, lineales, exactas, por sustitución, de Bernoulli, etc.) pero solo 

algunas de ellas se presentan a continuación, con el objetivo de introducir las 

ideas generales. Un hecho importante a resaltar es que los métodos para la 

solución numérica de ecuaciones diferenciales se aplican solo a modelos de 

primer orden, dado que siempre es posible reducir una ecuación diferencial 

de orden 𝑛 a 𝑛ecuaciones diferenciales de primer orden (sección 1.8.2). La 

forma general de una ecuación diferencial de primer orden es: 

 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦) (1.2) 

En primer lugar, las ecuaciones diferenciales de primer orden con variables 

separables permiten reducir el problema a uno de integración con respecto a 

cada variable (el problema se reduce a la aplicación y buen manejo del cálculo 

integral): 

 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦) = 𝑔(𝑦)ℎ(𝑡) (1.3) 

La solución es: 

∫
𝑑𝑦

𝑔(𝑦)
+ 𝐶1 = ∫ℎ(𝑡)𝑑𝑡 + 𝐶2 

Dado que al integrar cada término se generan dos constantes arbitrarias, 

pero se pueden unir en una, la solución tiene una sola constante arbitraria. A 

dicha solución se le llama solución general y corresponde a una familia de 

soluciones: 

 ∫
𝑑𝑦

𝑔(𝑦)
= ∫ℎ(𝑡) 𝑑𝑡 + 𝐶 (1.4) 

En la anterior solución no hay restricciones generales (en algunos casos la 

función no es integrable) sobre la forma de la función 𝑓(𝑦) y, por lo tanto, es 
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aplicable a modelos lineales o no lineales. Por ejemplo, sea la siguiente 

ecuación diferencial: 

𝑑𝑦

𝑑𝑡
= 𝑦(𝑦 − 1) 

La ecuación es no lineal debido a que hay un término de grado 2 (𝑦2), pero 

se puede resolver fácilmente: 

∫
𝑑𝑦

𝑦(𝑦 − 1)
= ∫𝑑𝑡 + 𝐶 

Dado que en el numerador se tiene el producto de dos polinomios, se 

pueden aplicar las fracciones parciales: 

∫(
1

𝑦 − 1
−
1

𝑦
)𝑑𝑦 = ∫𝑑𝑡 + 𝐶, ln|𝑦 − 1| − ln|𝑦| = 𝑡 + 𝐶  

Organizando y aplicando las propiedades de los algoritmos se obtiene: 

ln |
𝑦 − 1

𝑦
| = 𝑡 + 𝐶,    

𝑦 − 1

𝑦
= 𝑒𝑡+𝐶,     1 −

1

𝑦
= 𝐶𝑒𝑡,    𝐶 → 𝑒𝐶𝐶 → −𝐶 

𝑦 =
1

1 + 𝐶𝑒𝑡
 

Para comprobar que la solución es correcta se debe derivar y reemplazar en 

la ecuación diferencial. El siguiente código con la herramienta de matemáticas 

simbólicas de MATLAB (Symbolic Math Toolbox) permite encontrar la solución 

simbólica del problema: 

syms y(t) 
Dy = diff(y,t,1); ecu = Dy == y*(y-1); sol = dsolve(ecu) 

La solución, equivalente a la obtenida analíticamente, es: 
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El MATLAB entrega 3 soluciones, donde la segunda (𝑦 = 0) corresponde 

a una solución singular que no puede obtenerse de la solución general 

asignando un valor a la constante arbitraria 𝐶 (al derivarla satisface la ecuación 

diferencial). Sin embargo, la tercera solución (𝑦 = 1) sí se obtiene de la 

solución general haciendo 𝐶 = 0. El gráfico de una familia de soluciones para 

diferentes valores de la constante 𝐶 (Fig. 1.1) se puede obtener a partir del 

siguiente código: 

t = 0:0.01:10; % Definición de los instantes de t para el cálculo de la solución 
hold on % Para retener en un solo gráfico varias curvas 
for C = 1:1:10 
    y = 1./(1+C*exp(t)); 
    plot(t,y) 
end 
xlabel ('Tiempo'), ylabel('y(t)'), legend({'C=1','C=2','C=3','C=4','C=5','C=6','C=7','C=8','C=9','C=10'}) 
hold off % Para evitar que se sobrepongan otras figuras más adelante 

 

Fig. 1.1 Familia de soluciones de una ecuación diferencial de primer orden 

Las soluciones anteriores no se cruzan en ningún punto en el caso de 

ecuaciones de primer orden, dado que solo se tiene una constante arbitraria y 

esta se puede hallar dando en un punto los valores a las variables dependiente 

e independiente. Una práctica común consiste en utilizar como dicho punto 
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el valor en 𝑡 = 0, es decir 𝑦(0) = 𝑦0, a lo cual se le llama la condición inicial. 

La solución específica que pasa por el punto 𝑦(0) = 𝑦0 se denomina solución 

particular. Al problema de hallar la solución general de una ecuación 

diferencial y luego, a partir de la condición inicial, hallar la solución particular, 

se le denomina el problema de valor inicial: 

 

 

{ 
 
  
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦)

𝑦(𝑡0) = 𝑦0   

 (1.5) 

En el ejemplo anterior, si 𝑦(0) = 0.5, entonces 𝐶 = 1, como se observa en 

la figura de arriba: 

0.5 =
1

1 + 𝐶𝑒0
,    𝐶 = 1 

Ver los ejercicios resueltos [4] 1.25 y los ejercicios propuestos [5] 1.1 en la 

web del libro. 

1.2.3 Ecuaciones diferenciales de primer orden lineales 

Otro tipo especial de ecuaciones diferenciales de primer orden que se pueden 

resolver siempre son las ecuaciones lineales de primer orden, las cuales tienen 

la siguiente forma: 

 
𝑑𝑦

𝑑𝑡
+ 𝑎(𝑡)𝑦 = 𝑢(𝑡) (1.6) 

Si 𝑢(𝑡) = 𝑏 = const y 𝑎(𝑡) = 𝑎 = const, la ecuación es equivalente a una 

ecuación con variables separables: 

𝑑𝑦

𝑑𝑡
+ 𝑎𝑦 = 𝑏,     ∫

𝑑𝑦

𝑎𝑦 − 𝑏
= −∫𝑑𝑡,       

1

𝑎
ln|𝑎𝑦 − 𝑏| = −𝑡 + 𝐶      

𝑦 =
𝑏 + 𝐶𝑒−𝑎𝑡

𝑎
 

Cuando 𝑎(𝑡) = 𝑎 = const (la llamada ecuación con coeficientes 

constantes) se puede aplicar la teoría de la sección 1.2.5 (Ecuaciones 

https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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diferenciales lineales de orden superior). Si 𝑎(𝑡) depende del tiempo se 

tiene una ecuación con coeficientes variables y el método de solución es muy 

específico y se llama el método del factor integrante. En efecto, si se 

multiplica la ecuación (1.7) por una función 𝜇(𝑡), llamada el factor integrante, 

tal que el término de la izquierda es la derivada exacta de un producto, se 

tiene: 

𝜇(𝑡)
𝑑𝑦

𝑑𝑡
+ 𝜇(𝑡)𝑎(𝑡)𝑦 = 𝜇(𝑡)𝑢(𝑡),       

𝑑

𝑑𝑡
[𝜇(𝑡)𝑦(𝑡)] = 𝜇(𝑡)𝑢(𝑡) 

Dado que 

𝑑

𝑑𝑡
[𝜇(𝑡)𝑦(𝑡)] = 𝜇(𝑡)

𝑑𝑦

𝑑𝑡
+
𝑑𝜇

𝑑𝑡
𝑦 

La derivada se cumple si: 

𝑑𝜇

𝑑𝑡
= 𝜇(𝑡)𝑎(𝑡) 

Resolviendo la anterior ecuación con variables separables se tiene (no es 

necesaria la constante arbitraria, dado que con cualquier valor el método 

funciona): 

∫
𝑑𝜇

𝜇
= ∫𝑎(𝑡)𝑑𝑡 ,    𝜇(𝑡) = 𝑒∫𝑎(𝑡)𝑑𝑡 

Por ejemplo, sea la siguiente ecuación lineal con coeficientes variables: 

𝑑𝑦

𝑑𝑡
+ 2
𝑦

𝑡
= 1,      𝑎(𝑡) =

2

𝑡
,        𝑢(𝑡) = 1 

El factor integrante es: 

𝜇(𝑡) = 𝑒2∫𝑎(𝑡)𝑑𝑡 = 𝑒2∫
𝑑𝑡
𝑡 = 𝑒2ln𝑡 = 𝑡2 

Multiplicando la ecuación por dicho factor: 

𝑑𝑦

𝑑𝑡
𝑡2 +
2

𝑡
𝑡2𝑦 = 𝑡2 ,       

𝑑(𝑦𝑡2)

𝑑𝑡
= 𝑡2 ,       ∫𝑑(𝑦𝑡2) = ∫𝑡2𝑑𝑡 + 𝐶 

Integrando se obtiene: 
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𝑦𝑡2 =
𝑡3

3
+ 𝐶,       𝑦 =

𝑡

3
+ 𝐶𝑡−2 

Para hallar la solución particular no se puede dar una condición inicial con 

𝑡 = 0, pero sí en otro valor. Sea el siguiente problema de valor inicial: 

𝑑𝑦

𝑑𝑡
+ 2
𝑦

𝑡
= 1, 𝑦(1) = 0 

La constante arbitraria toma el siguiente valor: 

0 =
1

3
+ 𝐶1−2,   𝐶 = −

1

3
 

La solución particular es: 

𝑦(𝑡) =
𝑡

3
+ 𝐶𝑡−2 =

1

3
(𝑡 + 𝑡−2) 

Gráfico de la solución: 

 

El siguiente código de MATLAB permite obtener la solución general, la 

solución particular y graficar la familia de soluciones que se dan arriba: 

syms y(t) 
Dy = diff(y,t,1); ecu = Dy + 2*y/t == 1; sol_gral = dsolve (ecu); ci = y(1) == 0; sol_par = dsolve(ecu,ci); 
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hold on 
for i=0:5 
    ci = y(1) == i;   sol_par = dsolve(ecu,ci);  fplot(sol_par) 
end 
xlim([1 5]), xlabel('Tiempo'), ylabel('y(t)'), legend({'y(1)=0','y(1)=1','y(1)=2','y(1)=3','y(1)=4','y(1)=5'}) 
hold off 

La familia de soluciones se muestra en el gráfico de arriba, donde se observa 

que la solución pasa por la condición inicial y que con 𝑡 → ∞ la solución 

tiende a una función 𝑡/3. 
Ver los ejercicios propuestos [5] 1.1 en la web del libro. 

1.2.4 Teorema de existencia y unicidad para ecuaciones de primer orden 

En el ejemplo de la sección anterior no se puede obtener una solución 

particular para una condición inicial del tipo 𝑦(0), lo cual lleva a la necesidad 

de conocer de antemano las condiciones bajo las cuales un problema de valor 

inicial tiene solución y esta es única. Esa condición la da el teorema de 

existencia y unicidad de Picard, el cual establece la condición suficiente, mas 

no necesaria (si se cumple se garantiza que hay solución, pero de lo contrario 

no se sabe nada), para que el problema de valor inicial (1.5) tenga solución y 

sea única en una región cercana a 𝑡0: las funciones 𝑓(𝑡, 𝑦) y su derivada parcial 

∂𝑓/ ∂𝑦 deben ser continuas en una región 𝐷 alrededor de (𝑡0, 𝑦0).  
En el ejemplo mencionado, ninguna de las dos condiciones anteriores se 

cumple para el valor de 𝑡0 = 0, por lo cual no puede garantizarse una solución 

en ese punto (la condición no es necesaria), pero sí en otros. En realidad, al 

resolver la ecuación se observa que en ese punto no existe una solución 

particular. 

En otro ejemplo, sea la siguiente ecuación diferencial: 

𝑑𝑦

𝑑𝑡
= 𝑡𝑦1/2, 𝑦(0) = 0 

La función 𝑓(𝑡, 𝑦) = 𝑡𝑦1/2 es continua en 𝑡 = 0, pero ∂𝑓/ ∂𝑦 = 0.5𝑡𝑦−1/2 
no lo es, por lo que no se puede garantizar una solución única. La ecuación es 

de variables separables y su solución es 𝑦 = (𝑥2/4 + 𝐶)2, por lo que para 

𝑦(0) = 0, 𝐶 = 0 y se tiene una solución particular de la forma 𝑦 = 𝑥4/16. 
Dado que existe una solución, el teorema asegura que la solución no es única. 

https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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En efecto, 𝑦 = 0 también es una solución, y no se obtiene de la solución 

particular; es decir, corresponde a una solución singular. 

De otro lado, aunque el teorema especifica fácilmente si hay solución 

única, en la práctica la región 𝐷 puede ser tan pequeña que el resultado puede 

carecer de valor. Por ejemplo, sea el siguiente problema de valor inicial: 

𝑑𝑦

𝑑𝑡
= 𝑡2 + 𝑦2, 𝑦(𝑡0) = 𝑦0 

Dado que las funciones 𝑓 = 𝑡2 + 𝑦2 y ∂𝑓/ ∂𝑦 = 2𝑦 son continuas para 

cualquier valor de 𝑡 y 𝑦, entonces el problema de valor inicial tiene solución 

única. Aunque no existe una solución analítica para el problema, sí se puede 

encontrar una solución numérica, la cual existe en un intervalo muy estrecho. 

En general, si se observan comportamientos extraños en la solución 

numérica se debe probar con diferentes métodos numéricos y diferentes pasos 

del método para descartar problema de no existencia de la solución. No 

obstante, dado que los sistemas dinámicos reales a nivel macro siempre tienen 

un comportamiento único, es de esperar que sus modelos, si están bien 

planteados, tengan soluciones únicas; si no las tienen, eso puede ser un 

indicativo de una mala modelación matemática. 

1.2.5 Ecuaciones diferenciales lineales de orden superior 

La siguiente expresión plantea un problema de valor inicial de una ecuación 

diferencial ordinaria lineal con coeficientes constantes (objeto de este libro), 

donde 𝑢(𝑡) es el término independiente, 𝑎𝑖 son coeficientes constantes y 𝑦0𝑖 

corresponde a uno de los valores de las 𝑛 condiciones iniciales: 

 

{
 
 

 
 𝑑

𝑛𝑦

𝑑𝑡𝑛
+ 𝑎1

𝑑𝑛−1𝑦

𝑑𝑡𝑛−1
+⋯+ 𝑎𝑛−1

𝑑𝑦

𝑑𝑡
+ 𝑎𝑛𝑦 = 𝑢(𝑡)

𝑦(0) = 𝑦01, 𝑦(̇0) = 𝑦02, . . . , 𝑦
(𝑛−1)
(0) = 𝑦0𝑛    

 (1.7) 

La solución general  𝑦(𝑡) de la ecuación diferencial ordinaria de orden 

superior, es decir, la función que satisface la ecuación diferencial consta de 

dos partes: la familia de soluciones 𝑦ℎ(𝑡) de la ecuación homogénea (𝑢 = 0) 

con constantes arbitrarias 𝑐𝑖, llamada solución complementaria, y una solución 

𝑦𝑛ℎ(𝑡) de la ecuación no homogénea (𝑢 ≠ 0) que depende de la forma del 

término independiente específico 𝑢(𝑡): 
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 𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑛ℎ(𝑡) (1.8) 

La solución general, la cual contiene 𝑛 constantes arbitrarias, es la familia 

de 𝑛 soluciones linealmente independientes. Las funciones {𝑦1, 𝑦2, ⋯ , 𝑦𝑛} 
son linealmente independientes si la siguiente expresión se cumple si y solo 

si 𝑐1 = 𝑐2 = ⋯ = 𝑐𝑛 = 0: 

 𝑐1𝑦1 + 𝑐2𝑦2 +⋯+ 𝑐𝑛𝑦𝑛 = 0 (1.9) 

 

Fig. 1.2 Condiciones iniciales para ecuaciones diferenciales de orden 1 (izquierda) y orden 

2 (derecha) 

Una solución particular es una de las soluciones que satisface las 

condiciones iniciales: pasa por un punto determinado 𝑦(0) y en ese punto 

tiene una pendiente 𝑦(̇0), una concavidad 𝑦(̈0) y así sucesivamente hasta la 

derivada (𝑛 − 1). Por ejemplo, en la Fig. 1.2 se muestra que una ecuación 

diferencial de orden 1 tiene una familia de soluciones que pasan todas por 

distintos puntos, por lo que especificando un punto se selecciona la solución 

particular (no hay forma de que dos soluciones de una ecuación diferencial de 

orden 1 pasen por el mismo punto). De manera equivalente, una ecuación 

diferencial de orden 2 tiene dos familias de soluciones y muchas de ellas pasan 

por un mismo punto, pero ninguna tiene la misma pendiente en ese punto, 

por lo que es necesario indicar el punto por el que pasan y la pendiente en ese 

punto. Según el teorema de existencia y unicidad para ecuaciones lineales con 

coeficientes constantes, el problema de valor inicial para dichas ecuaciones 
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siempre tiene solución y es única para todo valor de la variable independiente 

𝑡. 
Para la solución de la ecuación homogénea se debe obtener la ecuación 

característica (1.10) y sus raíces características , la cual se obtiene buscando 

la solución en la forma 𝑦 = 𝑒𝜆𝑡. Se presentan tres casos de raíces 

características: reales diferentes, complejas diferentes y raíces múltiples. 

 𝜆𝑛 + 𝑎1𝜆
𝑛−1 +⋯+ 𝑎𝑛−1𝜆 + 𝑎𝑛 = 0 (1.10) 

 

Fig. 1.3 Número complejo en coordenadas cartesianas (rectangulares) y polares 

Los números complejos (ℂ) son la familia más grande de números, dado 

que contiene tanto los números reales (ℝ) como los números imaginarios (𝕀). 
Los números imaginarios surgen al obtener la raíz cuadrada de un número 

negativo: 𝑖 =
√
−1, 𝑖2 = −1, 𝑖3 = −𝑖, 𝑖4 = 1, 𝑖5 = 𝑖 y se repite el ciclo. Un 

número complejo tiene parte real (𝛼) y parte imaginaria (𝛽): 𝑧 = 𝛼 + 𝑖𝛽. Los 

números complejos se pueden representar en coordenadas cartesianas 

(𝑧 = 𝛼 + 𝑖𝛽)) o polares (𝑧 = 𝑟𝑒𝑖𝜑), tal y como se muestra en la Fig. 1.3. 

De la Fig. 1.3 se tiene la relación entre las representaciones cartesianas y 

polares de un número complejo: 

 𝑟 = √𝛼2 + 𝛽2, 𝜑 = arctan
𝛽

𝛼
 (1.11) 

  𝛼 = 𝑟cos𝜑, 𝛽 = 𝑟sen𝜑 (1.12) 
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Por ejemplo, 

𝑧1 = 1 + 𝑖,   𝛼 = 1, 𝛽 = 1 

𝑟 = √𝛼2 + 𝛽2 =
√
2 , 𝜑 = arctan

𝛽

𝛼
= arctan

1

1
=
𝜋

4
,  

𝑧 = 𝑟𝑒𝑖𝜑 =
√
2𝑒𝑖
𝜋
4  

Sobre los números complejos se pueden realizar las operaciones 

aritméticas, para lo cual es suficiente considerar que 𝑖 =
√
−1 es la 

representación de un número. En ciertas operaciones es útil utilizar la 

representación cartesiana y en otras la representación polar (en este caso es 

importante entender la función arctan y su signo). 

Si 𝜆 = 𝛼 ± 𝑖𝛽 es un número complejo con multiplicidad 𝑚, entonces la 

solución de la ecuación homogénea está conformada por las siguientes 

funciones linealmente independientes y sus respectivas constantes arbitrarias 

(pueden deducirse de la expresión los casos de raíces reales e imaginarias): 

 

𝑦ℎ(𝑡) = 𝑒
𝛼𝑡 [
(𝑐1cos𝛽𝑡 + 𝑐2sen𝛽𝑡) + 𝑡(𝑐3cos𝛽𝑡 + 𝑐4sen𝛽𝑡) + ⋯

⋯+ 𝑡𝑚−1(𝑐2𝑚−1cos𝛽𝑡 + 𝑐2𝑚sen𝛽𝑡)
] (1.13) 

 

El número de constantes arbitrarias de la solución complementaria es igual 

al orden de la ecuación diferencial. Si una raíz característica tiene una 

multiplicidad 𝑚, entonces es necesario multiplicar por 𝑡𝑚 para obtener 

soluciones linealmente independientes.  

Se llama conjunto fundamental de soluciones al conjunto de 𝑛 soluciones 

linealmente independientes de una ecuación homogénea de orden 𝑛. Un 

conjunto de soluciones es linealmente independiente en cierto intervalo 

(todo el eje real en el caso de ecuaciones lineales con coeficientes constantes) 

si y solo si el siguiente determinante, llamado el wronskiano, es diferente de 

cero: 

 𝐖(𝑡) =

|
 
 
 
𝑦1 𝑦2 ⋯ 𝑦𝑛
𝑦1̇ 𝑦2̇ ⋯ 𝑦𝑛̇
⋮ ⋮ ⋱ ⋮

𝑦1
(𝑛−1)

𝑦2
(𝑛−1)

⋯ 𝑦𝑛
(𝑛−1)
|
 
 
 
≠ 0 (1.14) 



1. Fundamentos matemáticos de los sistemas dinámicos 

19 

Es importante anotar que si 𝛼 < 0 en la solución anterior, entonces se 

obtendrán soluciones 𝑒−|𝛼|𝑡  que desaparecerán en el tiempo, es decir, que 

convergen a un valor. Si todas las raíces cumplen con la condición anterior, 

entonces el sistema se considera asintóticamente estable (ver sección 3.5 para 

más detalles). Cuando hay raíces múltiples, la solución se multiplica por 𝑡𝑚, 

por lo que una solución sinusoidal o constante se puede volver inestable. 

Para hallar la solución de la ecuación no homogénea se pueden utilizar dos 

métodos: el método de coeficientes indeterminados (método simple 

algebraico aplicable solo cuando se tiene un término que contiene un 

polinomio, una función exponencial, una función sinusoidal o un producto 

simple de ellos) o el método de variación de las constantes (método general, 

pero que requiere de integraciones). En el método de coeficientes 

indeterminados la solución particular tiene la misma forma del término 

independiente. Por ejemplo, si el término independiente es un polinomio la 

solución particular también será un polinomio del mismo grado con 

coeficientes indeterminados, y si el término independiente es una función 

sinusoidal la solución particular será una señal sinusoidal de cierta amplitud  y 

fase (o una suma de una función seno y una función coseno con coeficientes 

indeterminados); en ambos casos se debe multiplicar por 𝑡𝑟 para hallar 

soluciones linealmente independientes si la solución particular ya está en la 

solución general. Es decir, si el término independiente tiene la forma (1.15), 

entonces la solución de la ecuación no homogénea tiene la forma (1.16), 

donde 𝐴𝑛, 𝐵𝑛, 𝑃𝑛 y 𝑄𝑛 son polinomios de grado mayor 𝑛 (los dos primeros 

con coeficientes conocidos y los dos últimos con coeficientes 

indeterminados), y 𝑚 es el número de veces que hay que multiplicar el 

término por 𝑡 para que la solución resultante no esté dentro de la solución 

complementaria. 

 

𝑢(𝑡) = 𝑒𝛼𝑡[𝐴𝑛(𝑡)sen𝛽𝑡 + 𝐵𝑛(𝑡)cos𝛽𝑡] (1.15) 

 

     𝑦𝑛ℎ(𝑡) = 𝑡
𝑚𝑒𝛼𝑡[𝑃𝑛(𝑡)sen𝛽𝑡 + 𝑄𝑛(𝑡)cos𝛽𝑡] (1.16) 

El método anterior es difícil de aplicar al caso en el que el término 

independiente es una función definida por partes, dado que allí es necesario 

dividir la solución en diferentes fases, en cada una de las cuales la parte 

izquierda de la ecuación diferencial es la misma, pero el término 

independiente cambia y las condiciones iniciales en cada segmento 
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corresponden al valor de la solución anterior en ese instante de tiempo. En 

estos casos es mejor aplicar el método de la transformada de Laplace (sección 

1.3). Para las funciones definidas por partes se utiliza la función escalón 

unitario o de Heaviside, dada por la siguiente expresión: 

 𝑢𝑠(𝑡 − τ) = {
0, 𝑡 < τ
1, 𝑡 ⩾ τ

 (1.17) 

Ver los ejercicios resueltos [4] 1.1 y 1.2 y los ejercicios propuestos [5] 1.2 

en la web del libro. 

 

Fig. 1.4 Interpretación de la utilidad de la transformada de Laplace  

1.3 Transformada de Laplace 

1.3.1 Definición 

La transformada de Laplace es una integral con ciertas propiedades que tiene 

aplicaciones como la solución de ecuaciones diferenciales y ecuaciones de 

estado lineales de tiempo continuo con coeficientes constantes de una manera 

simple al pasar del dominio del tiempo 𝑡 al dominio de una variable compleja 

𝑠. La siguiente expresión matemática define la transformada de Laplace: 

https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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ℒ{𝑓(𝑡)} = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡

∞

0−

= 𝐹(𝑠), 𝑡 ∈ ℝ, 𝑠 ∈ ℂ (1.18) 

El límite inferior tiene especial sentido para funciones discontinuas, dado 

que en sistemas dinámicos se considera que 𝑓(𝑡 < 0) = 0. La integral 

converge (condición suficiente mas no necesaria) cuando 𝑓(𝑡) es de orden 

exponencial, es decir, se pueden encontrar valores de 𝑀  y 𝑚 de manera que 

|𝑓(𝑡)| < 𝑀𝑒𝑚𝑡. Por ejemplo, 𝑓(𝑡) = 1 siempre está por debajo de cualquier 

función exponencial con 𝑀 > 1 y su transformada de Laplace es: 

ℒ{1} = ∫ 𝑒−𝑠𝑡𝑑𝑡 =

∞

0

𝑒−𝑠𝑡

−𝑠
|
0

∞

= 0 − (−
1

𝑠
) =
1

𝑠
 

1.3.2 Transformadas básicas 

Aplicando la definición se pueden obtener las transformadas de funciones 

como las dadas en la TABLA 1.1. Las otras transformadas se demuestran de 

manera similar y se pueden consultar en [9]. 

TABLA 1.1. TRANSFORMADAS BÁSICAS DE LAPLACE 

𝑓(𝑡) 1 𝑡𝑛 𝑒𝑎𝑡 sen𝑎𝑡 cos𝑎𝑡 𝛿(𝑡 − 𝜏) 

𝐹(𝑠) 
1

𝑠
 

𝑛!

𝑠𝑛+1
 

1

𝑠 − 𝑎
 

𝑎

𝑠2 + 𝑎2
 

𝑠

𝑠2 + 𝑎2
 𝑒−𝜏𝑠 

 

 

La función delta de Dirac tiene un espacial uso e interpretación, dado que 

es una función generalizada (un tipo más general de función, dado que no se 

acoge a la definición convencional de función) que se define de la siguiente 

manera: 

 δ(𝑡 − τ) = {
∞, 𝑡 ≠ τ
0, 𝑡 = τ

    (1.19) 
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∫ δ(𝑡 − τ)𝑑𝑡 = 1

∞

−∞

,   ∫ 𝑓(𝑡)δ(𝑡 − τ)

∞

−∞

𝑑𝑡 = 𝑓(τ) 

La función se puede entender mejor a partir del pulso que se muestra en 

la Fig. 1.5, donde la amplitud se hace cada vez mayor a medida que el ancho 

disminuye; la dimensión de δ(𝑡) es la inversa de la dimensión de 𝑡: [δ(𝑡)] =
[𝑡]−1. Dicha representación es útil para la aproximación cuando se usan 

métodos numéricos, aunque pueden utilizarse otras aproximaciones [10], 

como la distribución gaussiana. En dichas expresiones es importante resaltar 

la manera como la función utilizada depende del paso de la simulación 

numérica. 

 

Fig. 1.5 Interpretación de la función delta de Dirac 

Algunas propiedades de la función delta de Dirac, donde 𝑢𝑠(𝑡) es la función 

escalón unitario (discontinua), se dan a continuación:  

𝑑𝑢𝑠(𝑡 − τ)

𝑑𝑡
= 𝛿(𝑡 − τ),    𝛿(𝑐𝑡) =

1

|𝑐|
δ(𝑡),    𝛿(𝑡) = δ(−𝑡) 

Con base en las propiedades anteriores se tiene: 

ℒ{𝛿(𝑡 − 𝜏)} = ∫ 𝛿(𝑡 − 𝜏)𝑒−𝑠𝑡𝑑𝑡 = 𝑒−𝑠𝜏
∞

0

,   ℒ{𝛿(𝑡)} = 1 
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1.3.3 Propiedades operacionales 

Aunque puede calcularse la transformada de Laplace utilizando siempre la 

definición, la fortaleza de la aplicación del método radica en la utilización de 

las transformadas básicas de la TABLA 1.1 y ciertas propiedades operacionales 

que se muestran en la TABLA 1.2, las cuales se obtienen a partir de la 

definición.  

Por ejemplo, para el cálculo de la propiedad de traslación temporal, donde 

𝑢𝑠(𝑡 − 𝜏) es la función escalón unitario, se tiene:  

ℒ{𝑓(𝑡 − 𝜏)𝑢𝑠(𝑡 − 𝜏)} = ∫ 𝑓(𝑡 − 𝜏)𝑢𝑠(𝑡 − 𝜏)𝑒
−𝑠𝑡𝑑𝑡

∞

0

= ∫ 𝑓(𝑡 − 𝜏)𝑒−𝑠𝑡𝑑𝑡

∞

𝜏

 

 

Cambiando de variables 𝜃 = 𝑡 − 𝜏, 𝑑𝜃 = 𝑑𝑡, con 𝜃 = 0 cuando 𝑡 = 𝜏 , se 

tiene: 

ℒ{𝑓(𝑡 − 𝜏)𝑢𝑠(𝑡 − 𝜏)} = ∫ 𝑓(𝜃)𝑒
−𝑠(𝜃+𝜏)𝑑𝜃

∞

0

= 𝑒−𝜏𝑠∫ 𝑓(𝜃)𝑒−𝑠𝜃𝑑𝜃

∞

0

= 𝐹(𝑠)𝑒−𝜏𝑠 

Ver los ejercicios resueltos [4] 1.26 y los ejercicios propuestos [5] 1.6 en la 

web del libro. 

https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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TABLA 1.2. PROPIEDADES DE LA TRANSFORMADA DE LAPLACE  

Propiedad 𝑓(𝑡) 𝐹(𝑠) 

Linealidad 𝑎𝑓1(𝑡) + 𝑏𝑓2(𝑡) 𝑎𝐹1(𝑠) + 𝑏𝐹2(𝑠) 

Traslación 

compleja 
𝑒𝑎𝑡𝑓(𝑡) 𝐹(𝑠 − 𝑎) 

Derivación 
𝑑𝑛𝑓

𝑑𝑡𝑛
 𝑠𝑛𝐹(𝑠) −∑𝑠𝑛−𝑖𝑓 (𝑖−1)(0−)

𝑛

𝑖=1

 

Traslación 

temporal o 

real 

𝑓(𝑡 − 𝜏)𝑢𝑠(𝑡 − 𝜏) 𝑒−𝜏𝑠𝐹(𝑠) 

Convolución 𝑓1(𝑡) ∗ 𝑓2(𝑡) = ∫𝑓1(𝑡 − 𝜏)𝑓2(𝜏)𝑑𝜏

𝑡

0

 𝐹1(𝑠)𝐹2(𝑠) 

Integración ∫𝑓(𝑡)𝑑𝑡

𝑡

0

 
𝐹(𝑠)

𝑠
 

Valor inicial lim
𝑡→0+
𝑓(𝑡) lim

𝑠→∞
𝑠𝐹(𝑠) 

Valor final lim
𝑡→∞
𝑓(𝑡), si existe lim

𝑠→0
𝑠𝐹(𝑠) 

Potenciación 𝑡𝑛𝑓(𝑡) (−1)𝑛
𝑑𝑛𝐹(𝑠)

𝑑𝑠𝑛
 

 

1.3.4 Transformada inversa de Laplace 

Para resolver ecuaciones diferenciales, integrales, dífero-integrales o sistemas 

de ecuaciones diferenciales lineales con la transformada de Laplace, la idea es 

convertirlas a ecuaciones algebraicas en el espacio 𝑠 utilizando las 

transformadas básicas y las propiedades que convierten una función 𝑓(𝑡) en 

una función 𝐹(𝑠), luego realizar las operaciones en el espacio 𝑠 y de allí 

regresar al espacio 𝑡 calculando la transformada inversa de Laplace 

ℒ−1{𝐹(𝑠)} = 𝑓(𝑡), utilizando las mismas expresiones y propiedades básicas 

en sentido contrario, generalmente multiplicando o dividiendo por una 

constante y aplicando el método de fracciones parciales. La idea se muestra 
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en la Fig. 1.4. Las transformadas dadas en las tablas anteriores deben 

entenderse en ambos sentidos, es decir: 

ℒ{1} =
1

𝑠
,   ℒ−1 {

1

𝑠
} = 1 

ℒ−1 {
1

𝑠2 + 4
} =
1

2
ℒ−1 {

2

𝑠2 + 4
} =
1

2
sen 2𝑡 

La descomposición en fracciones parciales da: 

1

(𝑠 + 1)(𝑠2 + 3)
=
𝐴

𝑠 + 1
+
𝐵𝑠 + 𝐶

𝑠2 + 3
=
1

𝑠 + 1
−
𝑠 − 1

𝑠2 + 3
 

De esta manera se tiene: 

ℒ−1 {
1

(𝑠 + 1)(𝑠2 + 3)
} =
1

4
ℒ−1 {

1

𝑠 + 1
−
𝑠 − 1

𝑠2 + 3
}

=
1

4
(𝑒−𝑡 − cos

√
3𝑡 +

1
√
3
sen
√
3𝑡) 

 

La transformada de Laplace normalmente es una fracción estrictamente 

propia, es decir: 

lim
𝑠→∞
𝐹(𝑠) = 0 

Si la transformada no es estrictamente propia, eso significa que en la 

función temporal respectiva hay una función delta de Dirac. Por ejemplo: 

𝑌 (𝑠) =
𝑠

𝑠 + 1
=
𝑠 + 1 − 1

𝑠 + 1
= 1 −

1

𝑠 + 1
 ↔   𝑦(𝑡) = 𝛿(𝑡) − 𝑒−𝑡 

En la sección 1.4 se aplica la transformada de Laplace a la modelación 

matemática de sistemas dinámicos.  

Ver los ejercicios resueltos [4] 1.3, 1.4 y 1.5, y los ejercicios propuestos [5] 

1.7 y 1.8 en la web del libro. 

https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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1.4 Función de transferencia de tiempo continuo 

1.4.1 Definición 

La función de transferencia para un sistema LTI (lineal invariable en el 

tiempo o lineal con coeficientes constantes) de tiempo continuo de una 

entrada y una salida (SISO, Single Input Single Output) es la relación entre la 

transformada de Laplace de la salida y la transformada de Laplace de la 

entrada suponiendo condiciones iniciales iguales a cero.  

 

𝐺(𝑠) =
ℒ{𝑦(𝑡)}

ℒ{𝑢(𝑡)}
|
𝑐.𝑖.=0

=
𝑌 (𝑠)

𝑈(𝑠)
 (1.20) 

Aunque las ecuaciones diferenciales, en general, pueden tener condiciones 

iniciales arbitrarias, los sistemas dinámicos se estudian alrededor de puntos 

de equilibrio, donde las condiciones iniciales iguales a cero son naturales. En 

general, para una ecuación diferencial, 𝑦(0) = 𝑦0 y las derivadas son iguales a 

cero (lo que corresponde a un punto de equilibrio), por lo que se puede tomar 

𝑦(0) = 0 y sumarle el valor de 𝑦0 a la respuesta final. Lo anterior equivale a 

una linealización, tal y como se explica en la sección 3.4. Si no se pueden 

asumir condiciones iniciales iguales a cero, entonces es necesario utilizar el 

modelo en el espacio de estado (sección 1.8) o dividir el problema en dos 

partes: hallar la solución con condiciones iniciales iguales a cero y luego 

sumarle un término de corrección tal y como se muestra en las ecuaciones 

(1.87) y (1.89). Por ejemplo, la función de transferencia de la siguiente 

ecuación diferencial puede obtenerse solo si se asumen condiciones iniciales 

iguales a cero: 

𝑦̈ + 𝑎1𝑦̇ + 𝑎2𝑦 = 𝑏1𝑢̇(𝑡) + 𝑏2𝑢(𝑡) 

ℒ{𝑦}̈ + 𝑎1ℒ{𝑦}̇ + 𝑎2ℒ{𝑦} = ℒ{𝑏1𝑢̇(𝑡) + 𝑏2𝑢(𝑡)} 

𝑠2𝑌 (𝑠) − 𝑠𝑦(0) − 𝑦(̇0) + 𝑎1[𝑠𝑌 (𝑠) − 𝑦(0)] + 𝑎2𝑌 (𝑠)

= 𝑏1[𝑠𝑈(𝑠) − 𝑢(0)] + 𝑏2𝑈(𝑠) 

𝑠2𝑌 (𝑠) + 𝑎1𝑠𝑌 (𝑠) + 𝑎2𝑌 (𝑠) = 𝑏1𝑠𝑈(𝑠) + 𝑏2𝑈(𝑠) 

𝑌 (𝑠)

𝑈(𝑠)
=

𝑏1𝑠 + 𝑏2
𝑠2 + 𝑎1𝑠 + 𝑎2
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La función de transferencia representa la relación entre las transformadas 

de la salida y la entrada, sin importar cual es la entrada, por lo que representa 

el sistema mismo. Dicha expresión corresponde a su vez a la relación de dos 

polinomios, cada uno de los cuales da información directa sobre el sistema. El 

polinomio denominador de la función de transferencia corresponde a la 

ecuación característica (el lector debe desarrollar la capacidad de ver una 

ecuación diferencial ordinaria a partir de la función de transferencia).  

La función de transferencia puede ser una fracción propia (el grado del 

numerador es igual al grado del numerador) o una fracción estrictamente 

propia (el grado del numerador es menor que el grado del denominador). Los 

procesos continuos se modelan generalmente con fracciones estrictamente 

propias, mientras que las fracciones propias son comunes en el diseño de 

controladores; ambos casos corresponden a modelos causales.  

La causalidad es una condición que relaciona dos o más acontecimientos 

de modo que uno causa o produce el otro (efecto). Una fracción impropia (el 

grado del numerador es mayor que el grado del denominador) no tiene 

significado físico y corresponde a un modelo no causal. En el caso de tiempo 

continuo, a una función de transferencia impropia le corresponde una 

ecuación diferencial que puede tener sentido, pero que presenta un 

problema: una función de transferencia impropia requiere de derivadores 

(𝐺(𝑠) = 𝑠) para su implementación, lo cual conlleva a que, ante una entrada 

escalón 𝑢𝑠(𝑡 − 𝜏), la respuesta temporal tenga una salida tipo función delta 

de Dirac (sección 1.3) en el instante 𝜏 , y un valor infinito equivalente a un 

comportamiento inestable (en términos de polos y ceros de la sección 1.4.2, 

equivale a tener los polos faltantes en el infinito en el semiplano derecho). En 

definitiva, el problema del diferenciador se traduce en una implementación 

numérica de la derivada con diferencias finitas, por ejemplo, con los problemas 

de causalidad explicados anteriormente. El siguiente es un ejemplo de una 

función de transferencia impropia (donde surge un derivador) y su respectiva 

ecuación diferencial y ecuación en diferencias no causal:  

𝐺(𝑠) =
𝑌 (𝑠)

𝑈(𝑠)
=
𝑠2

𝑠 + 1
= 𝑠 − 1 +

1

𝑠 + 1
 

La respectiva ecuación diferencial es: 

𝑦̇ + 𝑦 = 𝑢̈ 
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Discretizando se obtiene la siguiente ecuación en diferencias no causal: 

𝑦(𝑘 + 1) − 𝑦(𝑘)

𝑇𝑠
+ 𝑦(𝑘) ≃

𝑢(𝑘 + 2) − 2𝑢(𝑘 + 1) + 𝑢(𝑘)

𝑇𝑠
2

 

Los siguientes son ejemplos de funciones de transferencia con su 

respectiva ecuación diferencial o en diferencias, donde se puede observar que 

un polinomio de grado mayor o igual a uno aparece en el numerador cuando 

hay derivadas de la variable de entrada: 

𝐺(𝑠) =
𝑌 (𝑠)

𝑈(𝑠)
=

𝑠 + 1

𝑠(𝑠2 + 3𝑠 + 3)
,     𝑦 ⃛ + 3𝑦̈ + 3𝑦̇ = 𝑢̇ + 1 

Una vez conocida la función de transferencia se puede encontrar la 

respuesta temporal a cualquier tipo de entrada: 

 𝐺(𝑠) =
𝑌 (𝑠)

𝑈(𝑠)
     𝑦(𝑡) = ℒ−1{𝑌 (𝑠)} = ℒ−1{𝐺(𝑠)𝑈(𝑠)} (1.21) 

En el caso de sistemas lineales invariables en el tiempo con 𝑚 entradas y 𝑝 
salidas (MIMO, Multiple Inputs Multiple Outputs, MISO, Multiple Inputs Single 

Output, o SIMO, Single Input Multiple Outputs), la matriz de funciones de 

transferencia es la matriz de (𝑝 ×𝑚) que reúne el conjunto de todas las 

funciones de transferencia 𝐺𝑖𝑗(𝑠) = 𝑌𝑖(𝑠)/𝑈𝑗(𝑠) para cada par “salida 

/entrada”, suponiendo que las demás entradas son iguales a cero: 

 𝐆(𝑠) =

[
 
 
𝐺11(𝑠) ⋯ 𝐺1𝑚(𝑠)
⋮ ⋱ ⋮

𝐺𝑝1(𝑠) ⋯ 𝐺𝑝𝑚(𝑠)]
 
 

 (1.22) 

Donde 

𝐘(𝑠) = 𝐆(𝑠)𝐔(𝑠),     𝐘(𝑠) = [𝑌1(𝑠) ⋯ 𝑌𝑝(𝑠)]
𝑇

 

𝐔(𝑠) = [𝑈1(𝑠) ⋯ 𝑈𝑚(𝑠)]
𝑇

 

Una característica importante de muchos sistemas dinámicos es el retardo, 

es decir, el tiempo que tarda en responder un sistema dinámico a un estímulo. 

El retardo se incluye en los modelos de tiempo continuo como un número real 

𝜏 . Las fuentes más comunes de retardo son: el tiempo requerido en la 
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medición y el transporte, el tiempo exigido para el análisis, el tiempo de 

cálculo y comunicación (en sistemas digitales) y la compensación cuando un 

modelo se aproxima por otro de menor orden. Los problemas de los sistemas 

con retardo incluyen el empeoramiento de la estabilidad y el análisis y diseño 

más complicados. En el caso de tiempo continuo, debido al término no 

polinomial 𝑒−𝜏𝑠 (en el caso discreto este no es un problema), es más difícil 

obtener un control satisfactorio debido a la reducción de las ganancias de 

control. 

Para modelar el retardo en el caso continuo es importante tener en cuenta 

las siguientes propiedades de la transformada de Laplace y transformada z: 

ℒ{𝑓(𝑡 − 𝜏)𝑢𝑠(𝑡 − 𝜏)} = 𝑒
−𝜏𝑠𝐹(𝑠) 

De esta manera, la función de transferencia con retardo toma la siguiente 

forma: 

 

 

𝐺(𝑠) =
𝑁(𝑠)

𝐷(𝑠)
𝑒−𝜏𝑠 =

𝑏0𝑠
𝑚 + 𝑏1𝑠

𝑚−1 +⋯+ 𝑏𝑚−1𝑠 + 𝑏𝑚
𝑠𝑛 + 𝑎1𝑠

𝑛−1 +⋯+ 𝑎𝑛−1𝑠 + 𝑎𝑛
𝑒−𝜏𝑠 (1.23) 

Se puede aproximar el retardo continuo 𝜏  utilizando series de potencia, 

siendo la aproximación de Padé la mejor opción. Dicha aproximación es útil 

en el análisis y diseño de controladores, dado que el término de retardo se 

transforma en una expresión racional de un mejor manejo algebraico. La 

aproximación de Padé de primer orden del retardo tiene la siguiente forma: 

 𝑒−𝜏𝑠 =
𝑒−𝜏𝑠/2

𝑒𝜏𝑠/2
≈
1 − 𝜏𝑠/2

1 + 𝜏𝑠/2
 (1.24) 

Ver los ejercicios propuestos [5] 1.13 y 1.14 en la web del libro. 

1.4.2 Polos y ceros 

La función de transferencia permite definir de manera clara información del 

sistema dinámico, como las raíces características y el retardo. En el lenguaje 

de la función de transferencia, a las raíces del polinomio denominador (raíces 

características) se les llama polos, siendo este el nombre más general para 

https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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dichos valores. El orden de un sistema es igual al número de polos. En otras 

palabras, los polos 𝑝𝑖 son los valores que satisfacen los siguientes límites: 

 lim
𝑠→𝑝𝑖
𝐺(𝑠) = ∞ (1.25) 

          

Fig. 1.6 Región de estabilidad de sistemas lineales de (a) tiempo continuo y (b) tiempo 

discreto 

Los polos determinan la estabilidad del sistema, de manera que para un 

sistema de tiempo continuo la estabilidad se logra si todos los polos tienen 

parte real negativa (están en el semiplano izquierdo), mientras que en el caso 

discreto deben tener un módulo menor que uno (están dentro del círculo 

unitario), tal y como se muestra en la Fig. 1.6.  

Lo anterior se observa al dar la solución a partir de las raíces características: 

𝜆 = 𝛼 + 𝑖𝛽,    𝑦(𝑡) = 𝑒𝛼𝑡(𝑐1sen𝛽𝑡 + 𝑐2cos𝛽𝑡), 𝛼 < 0 

Entre más lejos a la izquierda del eje imaginario estén los polos del sistema 

de tiempo continuo más rápidamente desaparece el efecto de ese polo en la 

respuesta temporal. El polo dominante en un sistema estable es el polo más 

cercano al eje imaginario y el que determina el decaimiento más lento de la 

respuesta temporal. Los polos insignificantes son los polos alejados del eje 

imaginario entre 5 y 10 veces en relación con el polo dominante, y cuyo 

componente de la respuesta temporal decrece, y por lo tanto desaparece, 

rápidamente. La Fig. 1.7 muestra el comportamiento estable e inestable no 

oscilatorio y oscilatorio de acuerdo con la ubicación de los polos en el plano 

complejo de un sistema continuo, donde se observan las diferencias cuando 
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los polos se alejan del eje imaginario (mayor estabilidad si están en el 

semiplano izquierdo) y del eje real (mayor frecuencia de las oscilaciones si 

están en el semiplano izquierdo). En general, como se verá en la sección 3.5.6, 

la velocidad de convergencia crece con la distancia entre el polo dominante y 

el eje imaginario, mientras que la frecuencia de las oscilaciones crece con la 

distancia entre el polo y el eje imaginario. 

 

Fig. 1.7 Respuesta temporal de un sistema continuo de acuerdo con la ubicación de polos 

De otro lado, a las raíces del polinomio numerador de la función de 

transferencia se les llama ceros. Los ceros surgen de una ecuación diferencial 

cuando se tienen derivadas de la variable de entrada y tienen una 

interpretación un poco más compleja, la cual se dará a continuación para el 

caso continuo. Como dependen de la entrada, los ceros representan el 

acoplamiento del sistema con el entorno. Para empezar, los ceros afectan la 

respuesta temporal y frecuencial del sistema, logrando incluso una especie de 

“adelantamiento” de la respuesta temporal en sistemas discretos que conlleva a 

que las condiciones iniciales iguales a cero sean menores que 𝑛. Formalmente, 

los ceros 𝑧𝑖 satisfacen la siguiente expresión: 
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 lim
𝑠→𝑧𝑖
𝐺(𝑠) = 0 (1.26) 

La expresión anterior se satisface en valores finitos (ceros finitos), pero 

también en valores infinitos (ceros infinitos). En sistemas dinámicos el 

número de ceros se considera igual al número de polos, por lo que se considera 

que los ceros faltantes que están en el infinito (real, imaginario o complejo). 

Por defecto, se denominan ceros generalmente a los ceros finitos. El siguiente 

ejemplo muestra la ubicación de los polos y ceros: 

𝐺(𝑠) =
(𝑠 + 1)(𝑠 + 2)𝑒−3𝑠

𝑠2(𝑠 + 3)(𝑠2 + 2𝑠 + 2)
 

Polos = {0,0,−3,1 + 𝑖, 1 − 𝑖}          Ceros (finitos) = {−1,−2} 

En general, un cero finito de un sistema lineal invariable en el tiempo es 

un valor 𝑧𝑖 que muestra cuándo la transmisión desde una entrada no nula a 

una salida es bloqueada debido a efectos internos en el sistema. En un sistema 

con una sola entrada y una salida si se aplica una entrada 𝑢 = 𝑒𝑧𝑖𝑡, la salida 

tenderá a cero (elimina la entrada). Para el caso de ceros complejos se 

bloquean las entradas complejas {𝑒𝑖𝑡, 𝑒−𝑖𝑡} que corresponden a las entradas 

reales {sen𝑡, cos𝑡}. Por ejemplo, la respuesta temporal del siguiente sistema 

se muestra en la Fig. 1.8, donde se observa que la salida finalmente desaparece 

si se aplica la entrada adecuada relacionada con el cero de la función de 

transferencia, incluso si la entrada crece indefinidamente: 

𝐺(𝑠) =
𝑠 − 1

𝑠2 + 3𝑠 + 2
,    𝑢 = 𝑒𝑡,    𝑈(𝑠) =

1

𝑠 − 1
,   𝑢(0−) = 0 

𝑌 (𝑠) =
1

𝑠2 + 3𝑠 + 2
,    𝑦(𝑡) = 𝑒−𝑡 − 𝑒−2𝑡,   lim

𝑡→∞
𝑦(𝑡) = 0 

Hay un hecho importante a resaltar en el ejemplo anterior: si se resuelve la 

ecuación diferencial con la respectiva entrada se obtiene una solución 

diferente (𝑦 = 0). En efecto: 

𝑦̈ + 3𝑦̇ + 2𝑦 = 𝑢̇ − 𝑢, 𝑦(0) = 𝑦(̇0) = 0 

𝑢̇ − 𝑢 = 0,    𝑢(𝑡) = 𝑒𝑡,      𝑦(𝑡) = 0 
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Fig. 1.8 Interpretación de un cero de un modelo lineal con una entrada creciente 𝑒𝑧𝑡 

La razón del problema anterior es que se están resolviendo dos problemas 

diferentes: para la ecuación diferencial 𝑢(0) = 1, mientras que en el caso de 

la función de transferencia se tiene que 𝑢(0) = 0. Cuando se resuelve una 

ecuación diferencial con derivadas de la entrada por transformada de Laplace, 

se debe especificar que 𝑢(0−) = 0 para obtener la primera solución 𝑦(𝑡) =
𝑒−𝑡 − 𝑒−2𝑡, o 𝑢(0+) = 1 para la segunda solución (𝑦 = 0). Se invita al lector a 

verificar lo dicho anteriormente [11] [12]. 

Así como la ubicación en el plano complejo de los polos tiene una 

implicación en el comportamiento del sistema, la ubicación de los ceros 

también juega un papel importante. Cuando un sistema lineal es estable y los 

ceros están en el semiplano izquierdo para el caso continuo, o dentro del 

círculo unitario para el caso discreto (el caso continuo y discreto se puede 

unificar bajo el nombre de polos y ceros estables), se dice que se tiene un 

sistema de fase mínima. El retardo de tiempo continuo implica un 

comportamiento de fase no mínima, tal y como puede verse de la ecuación 

(1.24). Es importante resaltar que un sistema de fase mínima es aquel que 

tiene no solo ceros estables, sino también los polos estables; esta confusión se 

debe a que normalmente se asume que el sistema es estable.  

Un cero de fase mínima al acercarse al eje imaginario tiende a aumentar el 

sobreimpulso máximo, reducir el tiempo de pico y reducir el tiempo de 
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crecimiento, tal y como se muestra a continuación. Sea la siguiente función 

de transferencia con un cero en 𝑧𝑖: 

𝐺(𝑠) =
1

𝑧𝑖
(𝑠 + 𝑧𝑖)𝐺(̅𝑠) = (

𝑠

𝑧𝑖
+ 1)𝐺(̅𝑠) = 𝐺(̅𝑠) +

𝑠

𝑧𝑖
𝐺(̅𝑠) 

Con una entrada 𝑢 = 1 la respuesta temporal es: 

𝑦(𝑡) = 𝑦(̅𝑡) +
1

𝑧𝑖
𝑦̇(𝑡) 

 

Fig. 1.9 Efecto de la posición de un cero de fase mínima en la respuesta temporal  

Por ejemplo, pueden verse en la Fig. 1.9 los efectos mencionados 

anteriormente utilizando el siguiente código de MATLAB para el cálculo de 

la respuesta temporal con diferentes posiciones del cero 𝑧𝑖 y 𝐺(̅𝑠) = 2/(𝑠2 +

3𝑠 + 2): 

z1 = -1e6; G1 = 2*tf([-1/z1 1], [1 3 2]); z2 = -10; G2 = 2*tf([-1/z2 1], [1 3 2]);  
z3 = -1; G3 = 2*tf([-1/z3 1], [1 3 2]); z4 = -0.5; G4 = 2*tf([-1/z4 1], [1 3 2]) 
step(G1,'k',G2,'b--',G3,'r-.',G4,'g'), legend({'G1, z1=-1e-6' 'G2, z2=-10' 'G3, z3=-1' 'G4, z4=-0.5'}) 
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Fig. 1.10 Comportamiento típico de algunos sistemas de fase no mínima 

Como se verá en la sección 3.7, Fig. 3.31, el nombre de fase no mínima 

proviene del hecho de que, si se traza la respuesta frecuencial de sistemas que 

tienen una función de transferencia con una forma semejante que se 

diferencia solo por el signo de los polos y ceros, el cambio de fase será mínimo 

solo para aquella función de transferencia con todos sus polos y ceros estables. 

Algo parecido aparece muchas veces (no siempre) en la respuesta temporal, 

donde en un sistema estable de fase no mínima la respuesta puede tener una 

variación total mayor que la de un sistema estable de fase mínima equivalente 

(mismos polos y ceros de diferente signo), con un comportamiento extraño 

ante una entrada constante positiva, cuando, en lugar de subir, la respuesta 

temporal desciende para luego empezar a subir de nuevo (ver Fig. 1.10). 

Algunos casos prácticos de un comportamiento de fase no mínima son: (1) 

Péndulo invertido: cuando se quiere mover el péndulo hacia la izquierda, 

primero debe moverse la base hacia la derecha, el péndulo se inclinará hacia 

la izquierda y luego hay que mover la base rápidamente hacia la izquierda y 

sobrepasar el centro de gravedad para que se estabilice en la nueva posición. 

(2) Calentamiento de una casa con horno de carbón: si la temperatura es 

demasiado baja, se agrega más carbón para calentar el horno, pero al principio 

se obtiene realmente lo contrario, pues la temperatura se reduce debido a que 

el carbón agregado atenúa el fuego. Luego, el fuego obtiene más potencia y la 
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temperatura comienza a subir. (3) La altitud de un avión: cuando un piloto 

quiere ganar altura, primero tiene que girar hacia arriba la aeronave para 

aumentar el ángulo de ataque, pero se obtiene una fuerza hacia abajo que baja 

el centro de gravedad antes de que el aumento de la fuerza hacia arriba en las 

alas levante el avión, a partir del aumento del ángulo de ataque. (4) La 

digestión y la mayoría de los procesos metabólicos: para obtener calorías de los 

alimentos, el cuerpo debe gastar calorías para descomponer los alimentos 

(masticar, digerir, etc.), pero a largo plazo gana más energía de la comida que 

la que se gastó. (5) La mayoría de las prácticas médicas: muchas curas 

requieren la ingestión de medicamentos tóxicos que inicialmente hacen que 

el paciente se sienta mucho peor, pero luego lo mejoran. (6) Negocios/vida: 

para obtener ganancias/éxito, lo que significa bienestar y tranquilidad, se 

necesita un período inicial de arduo trabajo y problemas. (7) Ejercicio físico: 

por lo general, el ejercicio al inicio hace sentir peor a la persona (menos 

energía), pero a la larga la hace sentir mejor. (8) Contratación de un nuevo 

empleado: el objetivo de contratar a alguien es aumentar la productividad, 

pero generalmente la productividad en un grupo con un nuevo empleado 

inicialmente disminuye debido a la capacitación requerida.  

En el caso de sistemas con múltiples entradas y salidas la interpretación de 

los ceros es más compleja, dado que además del valor del cero es necesario 

incluir un vector 𝐩𝑧 [13] [14]. En sistemas MIMO existen diferentes tipos 

de ceros, pero los más usuales (que se ajustan a la definición anterior) son los 

llamados ceros de transmisión cuando se tiene una realización mínima 

(después de la cancelación de polos y ceros) y los ceros invariantes de una 

realización no mínima. En la sección 1.8.8 se explica cómo calcular los polos y 

ceros a partir de la ecuación de estado. Para el caso MIMO, en este libro se 

utiliza MATLAB para su cálculo, pero es importante comprender su 

significado. Si el lector quiere profundizar, en [14] está la solución analítica a 

los problemas planteados a continuación. 

La realización mínima (o de mínima dimensión) de una ecuación de estado 

o función de transferencia es la representación que queda luego de reducir el 

orden por la cancelación de polos y ceros (eliminación de los modos no 

controlables y no observables). El orden del modelo resultante es igual al 

grado de McMillan. En el caso de una función de transferencia, a la realización 

mínima también se le denomina fracción coprima. En la sección 1.4.3 se tratan 

los métodos de reducción del orden. Una ecuación de estado tiene una 
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realización mínima si es completamente controlable y observable (sección 

4.10). 

En general, y por definición, los polos de una realización mínima de una 

matriz de funciones de transferencia 𝐆(𝑠) se obtienen del mínimo común 

denominador de todos los menores no nulos; los ceros se obtienen del máximo 

común divisor de todos los numeradores de orden igual al rango (número de 

filas o columnas linealmente independientes) de 𝐆(𝑠), donde el polinomio 

de los polos debe estar en el denominador de cada menor. Se puede ver que 

es más probable que una matriz de funciones de transferencia rectangular 

tenga menos ceros que una cuadrada. El cálculo de los polos y ceros de 

sistemas MIMO no es un problema trivial y no se obtienen, generalmente, de 

la matriz de funciones de transferencia. 

Ver los ejercicios resueltos [4] 1.12 y los ejercicios propuestos [5] 1.13 en 

la web del libro. 

1.4.3 Reducción del orden de la función de transferencia 

El orden de un modelo matemático es una abstracción matemática adecuada 

para la representación de una realidad física, generalmente relacionada con los 

elementos almacenadores de energía (ver la sección 1.8). Sin embargo, puede 

ocurrir que haya variables linealmente dependientes o que ciertos valores de 

los parámetros lleven a que una representación de menor orden (realización 

mínima) sea suficiente para la modelación del sistema. Por lo tanto, es 

importante conocer los métodos que permiten la reducción del orden, algunos 

de los cuales (los más intuitivos) se presentan a continuación para el caso 

lineal invariable en el tiempo: cancelación de polos y ceros de fase mínima, 

eliminación de polos insignificantes y métodos formales con MATLAB. Otra 

forma consiste en aplicar métodos de identificación de sistemas (capítulo 5) 

para, dado un modelo determinado, obtener datos de una respuesta temporal 

con una entrada determinada y de esos datos calcular un modelo adecuado de 

menor orden. Los dos primeros métodos se basan en la idea básica de quitar 

los polos y compensar con una ganancia, de manera que se conserve el valor 

final ante una entrada escalón: 

𝑦𝑠𝑠 = lim
𝑡→∞
𝑦(𝑡) = lim

𝑠→0
𝑠𝑌 (𝑠) = lim

𝑠→0
𝑠𝐺(𝑠)

1

𝑠
= 𝐺(0) 

Para el caso de cancelación de polos y ceros cercanos se tiene: 

https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html


1. Fundamentos matemáticos de los sistemas dinámicos 

38 

𝐺(𝑠) = 𝐺(̅𝑠)
𝑠 + 𝑎1
𝑠 + 𝑎2

= 𝐺(̅𝑠)
𝑠 + 𝑎 ±∆𝑎

𝑠 + 𝑎
= 𝐺(̅𝑠) [1 ±

∆𝑎

𝑠 + 𝑎
] ≃ 𝑘𝐺(̅𝑠) 

La constante de compensación 𝑘 se obtiene a partir del término que se 

elimina: 

𝐺(0) = 𝑘𝐺(̅0),   𝑘 =
𝐺(0)

𝐺(̅0)
 

De la expresión anterior se observa que se puede cancelar un polo y un cero 

cuando 𝑎 > 0, es decir, el polo está en el semiplano izquierdo y la respuesta 

𝑒−𝑎𝑡 desaparece con el tiempo (desaparece más rápidamente entre más 

pequeño sea ∆𝑎). Para obtener el mismo valor final, se realiza una 

compensación con un valor 𝑘, igual a los términos que se quitan evaluados en 

cero.  

      

Fig. 1.11 Efecto en la respuesta temporal de la reducción del orden por cancelación de 

polos y ceros 

Por ejemplo: 

𝐺(𝑠) =
(𝑠 + 1.1)(𝑠 + 2)(𝑠 + 3)

(𝑠 + 1)(𝑠 + 2.8)(𝑠2 + 2𝑠 + 2)
, 𝐺(̅𝑠) ≈

𝑘(𝑠 + 2)

𝑠2 + 2𝑠 + 2
 

𝑘 =
𝐺(0)

𝐺(̅0)
=
(𝑠 + 1.1)(𝑠 + 3)

(𝑠 + 1)(𝑠 + 2.8)
|
𝑠=0

=
(1.1)(3)

(1)(2.8)
= 1.1786 
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𝐺(̅𝑠) ≈
1.1786(𝑠 + 2)

𝑠2 + 2𝑠 + 2
 

En la Fig. 1.11 se comparan las respuestas temporales a un escalón y a un 

impulso de las dos funciones de transferencia utilizando MATLAB: 

G = zpk([-1.1, -2, -3], [-1+i, -1-i,-1, -2.8], 1); Gred = zpk([-2], [-1+i, -1-i], 1.1786); 
step(G, Gred), legend, impulse(G, Gred), legend 

De manera similar, pueden eliminarse polos insignificantes (sección 1.4.2), 

es decir, los que se encuentren muy a la izquierda en el semiplano izquierdo 

y cuya respuesta temporal a un escalón desaparece rápidamente, y 

compensarlos con un valor 𝑘. Por ejemplo, en la siguiente función de 

transferencia el polo dominante es (-1) y el polo insignificante es (-10), el cual 

está a 10 veces del polo dominante: 

𝐺(𝑠) =
5

(𝑠 + 1)(𝑠 + 2)(𝑠 + 10)
≃

5𝑘

(𝑠 + 1)(𝑠 + 2)
= 𝐺(̅𝑠) 

𝑘 =
𝐺(0)

𝐺(̅0)
=

1

𝑠 + 10
|
𝑠=0

=
1

10
= 0.1, 𝐺(̅𝑠) =

0.5

(𝑠 + 1)(𝑠 + 2)
 

    

Fig. 1.12 Efecto en la respuesta temporal de la reducción del orden por eliminación de 

polos insignificantes 
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En la Fig. 1.12 se comparan las respuestas temporales a un escalón y a un 

impulso de las dos funciones de transferencia. El respective código de 

MATLAB es: 

G = zpk([ ], [-1, -2, -10], 5); Gred = zpk([ ], [-1, -2], 0.5); step(G, Gred), legend 

En cuanto a los métodos formales, la función balred de MATLAB 

implementa un método de reducción que proporciona estabilidad y un 

estricto control de errores. Para el primer ejemplo, los resultados son los 

siguientes, con un ajuste perfecto en los gráficos: 

G = zpk([-1.1, -2, -3], [-1+i, -1-i, -1, -2.8], 1); Gred = balred(G, 2); % Reducción a un modelo de orden 
2 
step(G, Gred), legend 

 

Ver los ejercicios resueltos [4] 1.14 y los ejercicios propuestos [5] 1.17 en 

la web del libro. 

1.5 Ecuaciones en diferencias de sistemas dinámicos 

lineales de tiempo discreto 

1.5.1 Conceptos 

Una ecuación en diferencias es una ecuación que contiene diferencias finitas 

hacia delante o hacia atrás. Una ecuación en diferencias se puede resolver 

analíticamente (sección 1.5.4), de una manera similar a la solución de las 

ecuaciones diferenciales, pero lo útil es que se pueden resolver 

iterativamente. Las ecuaciones diferenciales y las ecuaciones de estado de 

tiempo continuo se llevan a ecuaciones en diferencias para su solución 

numérica en un computador digital.  

Utilizando la definición de derivada y su aproximación puede obtenerse la 

diferencia finita hacia delante de primer orden, las cuales corresponden al 

método numérico de Euler (sección 2.7), donde se toma el paso fijo del 

método numérico igual al período de muestreo 𝑇𝑠 (sección 1.5.2), y los 

instantes de tiempo son discretos e iguales a 𝑡 = 𝑘𝑇𝑠: 

https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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𝑑𝑦

𝑑𝑡
= lim
∆𝑡→0

𝑦(𝑡 + ∆𝑡) − 𝑦(𝑡)

∆𝑡
≃
𝑦((𝑘 + 1)𝑇𝑠) − 𝑦(𝑘𝑇𝑠)

𝑇𝑠
= ∆𝑦(𝑘𝑇𝑠) (1.27) 

Donde 

∆𝑦(𝑘𝑇𝑠) =
𝑦((𝑘 + 1)𝑇𝑠) − 𝑦(𝑘𝑇𝑠)

𝑇𝑠
 

De igual manera, la diferencia finita hacia atrás tiene la siguiente forma: 

 

𝑑𝑦

𝑑𝑡
= lim
∆𝑡→0

𝑦(𝑡) − 𝑦(𝑡 − ∆𝑡)

∆𝑡
≃
𝑦(𝑘𝑇𝑠) − 𝑦((𝑘 − 1)𝑇𝑠)

𝑇𝑠
= ∇𝑦(𝑘𝑇𝑠) (1.28) 

Donde 

∇𝑦(𝑘𝑇𝑠) =
𝑦(𝑘𝑇𝑠) − 𝑦((𝑘 − 1)𝑇𝑠)

𝑇𝑠
 

Las diferencias finitas de orden 2 y superiores se obtienen a partir de las 

expresiones anteriores. Por ejemplo, la diferencia finita hacia delante de 

segundo orden es: 

∆(2)𝑦(𝑘𝑇𝑠) =
∆𝑦((𝑘 + 1)𝑇𝑠) − ∆𝑦(𝑘𝑇𝑠) 

𝑇𝑠
 

 ∆(2)𝑦(𝑘𝑇𝑠) =
𝑦((𝑘 + 2)𝑇𝑠) − 2𝑦((𝑘 + 1)𝑇𝑠) + 𝑦(𝑘𝑇𝑠)

𝑇𝑠
2

 (1.29) 

Si en una ecuación diferencial se reemplaza cada derivada de orden 𝑛 por 

una diferencia finita de orden 𝑛, entonces se obtienen ecuaciones en 

diferencias hacia adelante y hacia atrás como las que se muestran a 

continuación, donde, además, se omite 𝑇𝑠 y se deja de manera implícita. Es 

importante anotar que, aunque en dichas expresiones no aparece 

explícitamente el símbolo ∆ o ∇, la ecuación se sigue llamando una ecuación 

en diferencias y el orden del término 𝑦(𝑘 + 𝑖) es igual a 𝑖, y el orden de la 

ecuación está dado por el mayor valor de 𝑖.  
La ecuación en diferencias finitas hacia delante de orden 𝑛 con coeficientes 

constantes, y con condiciones iniciales, es: 
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{
𝑦(𝑘 + 𝑛) + 𝑎1𝑦(𝑘 + 𝑛 − 1) + ⋯+ 𝑎𝑛𝑦(𝑘) = 𝑢(𝑘)

𝑦(0) = 𝑦01, 𝑦(1) = 𝑦02, ⋯ , 𝑦(𝑛 − 1) = 𝑦0𝑛        
 (1.30) 

La ecuación en diferencias finitas hacia atrás de orden 𝑛 con coeficientes 

constantes, y con condiciones iniciales, es: 

 
{
𝑦(𝑘) + 𝑎1𝑦(𝑘 − 1)⋯+ 𝑎𝑛−1𝑦(𝑘 − 𝑛 + 1) + 𝑎𝑛𝑦(𝑘 − 𝑛) = 𝑢(𝑘)

𝑦(0) = 𝑦01, 𝑦(1) = 𝑦02, ⋯ , 𝑦(𝑛 − 1) = 𝑦0𝑛                          
 (1.31) 

Las condiciones iniciales se obtienen a partir de las diferencias finitas. Por 

ejemplo: 

𝑦(̇𝑡) ≃
𝑦(𝑘 + 1) − 𝑦(𝑘)

𝑇𝑠
, 𝑦(̇0) ≃

𝑦(1) − 𝑦(0)

𝑇𝑠
, 𝑦(1) ≃ 𝑦(̇0) + 𝑇𝑠𝑦(̇0) 

Aunque se puede aproximar una ecuación diferencial de cualquier orden 

con diferencias finitas del mismo orden, una solución más adecuada consiste 

en convertir la ecuación diferencial de orden 𝑛 en 𝑛 ecuaciones diferenciales 

de primer orden, tal y como se explica en la sección 1.8.2. 

Ver los ejercicios resueltos [4] 1.7 y los ejercicios propuestos [5] 1.3 en la 

web del libro. 

1.5.2 Discretización o digitalización de señales 

La discretización o digitalización es el proceso de conversión de una señal o 

modelo matemático de tiempo continuo en una señal o modelo matemático 

de tiempo discreto, lo cual requiere de una operación de muestreo (toma de 

muestras) con un período de muestreo 𝑇𝑠 (o frecuencia de muestreo 𝜔𝑠 =

2𝜋/𝑇𝑠 o 𝑓𝑠 = 1/𝑇𝑠). El muestreo puede ser regular (a intervalos iguales) o 

irregular (a intervalos diferentes). En el caso de un sistema con múltiples 

señales, el muestreo puede ser monofrecuencia (la misma frecuencia de 

muestreo para cada una las señales) o multifrecuencia (diferentes frecuencias 

de muestreo para cada una las señales). Generalmente, el período de muestreo 

se da con una sola cifra significativa. 

Con un período de muestreo pequeño se obtiene más información del 

sistema, la respuesta temporal es más suave y hay una respuesta más rápida a 

las perturbaciones, pero el costo computacional es mayor y los polos del 

modelo lineal de tiempo discreto tienden a ubicarse en el círculo unitario, 

https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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dado que 𝑧 = 𝑒𝑇𝑠𝑠, con lo cual la estabilidad relativa disminuye. Con un 

período de muestreo grande se pierde información y se presentan problemas 

indeseados como el enmascaramiento de señales o las oscilaciones ocultas. El 

mejor período de muestreo es el mayor período que da las prestaciones 

deseadas. Por lo tanto, se debe seleccionar adecuadamente el período de 

muestreo utilizando, como mínimo, el teorema de muestreo de Nyquist-

Shannon, el cual establece que la frecuencia de muestreo 𝜔𝑠 de una señal 

continua debe ser mayor que dos veces la frecuencia máxima de la señal 𝜔𝐵 

(según la descomposición dada por el transformada de Fourier descrita en la 

sección 3.7.4), conocida como ancho de banda, para que la señal continua se 

pueda reconstruir a partir de sus muestras: 

 𝜔𝑠 > 2𝜔𝐵 (1.32) 

La explicación de la expresión anterior se puede de ver a partir del 

fenómeno de doblado del espectro de las señales. El concepto de espectro se 

explica en la sección 3.7.4. El doblado del espectro (folding) es el fenómeno 

en el cual al muestrear una señal
 

de tiempo de banda limitada el espectro se 

repite con la misma forma y con un distanciamiento igual a la frecuencia de 

muestreo ω𝑠 (Fig. 1.13). Por lo tanto, se debe muestrear de manera que no se 

solapen las repeticiones del espectro de la señal discreta. 

                               

Fig. 1.13 Fenómenos de doblado y solapamiento del espectro 

El fenómeno de solapamiento del espectro genera un fenómeno de 

enmascaramiento de la señal. El enmascaramiento de señales (aliasing) es el 

fenómeno en el cual una señal discreta aparece de una forma diferente a la 

señal continua. Por ejemplo, al observar las aspas de un ventilador o llantas de 

un vehículo que se mueven rápidamente, estas aparentemente se mueven en 
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sentido contrario, lo cual se debe a que la frecuencia del procesamiento del 

cerebro no es la adecuada para observar ese movimiento. Si se tiene una señal 

con una frecuencia 𝜔 y se muestrea de manera incorrecta con una frecuencia 

𝜔𝑠, se generan señales de frecuencias menores 𝜔1 (máscaras), tal y como se 

muestra en la Fig. 1.14. Las frecuencias de las máscaras son: 𝜔1 =

|𝜔 ± 𝑘𝜔𝑠|, 𝑘 = 1,2,3, . .. 

 

Fig. 1.14 Enmascaramiento (aliasing) de señales 

Las señales en general no tienen banda limitada, por lo que para evitar el 

solapamiento es necesario eliminar, en realidad reducir, con un filtro 

antisolapamiento (antialiasing) tipo pasabajas (sección 3.7.5) las señales 

mayores a la frecuencia para la cual se obtuvo la frecuencia de muestreo (la 

llamada frecuencia de Nyquist): 

 𝜔𝑁 =
𝜔𝑠
2
(rad/𝑠), 𝑓𝑁 =

𝑓𝑠
2
(Hz) (1.33) 

Es decir, si se conoce el ancho de banda de una señal, entonces se puede 

aplicar el teorema, pero si se especifica la frecuencia de muestreo, entonces 

se debe asegurar, por medio de un filtro pasabajas, que no haya en la señal 

frecuencias mayores a la frecuencia de Nyquist. 

Más allá de teorema de muestreo, existe la regla heurística (1.34) permite 

una mejor selección a partir del tiempo de crecimiento 𝑇𝑟 de la respuesta 

temporal (ver sección 1.5.2), siendo 𝑇𝑟/10 el valor por defecto. Si el sistema 
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es inestable se debe seleccionar el período de muestreo a partir de la respuesta 

deseada en lazo cerrado. 

 
𝑇𝑟
10
< 𝑇𝑠 <

𝑇𝑟
2

 (1.34) 

Adicional a las condiciones anteriores, si se quiere conservar la 

controlabilidad y observabilidad con el muestreo se deben evitar períodos de 

muestreo cercanos a aquellos que violan la condición de regularidad del 

muestreo (sección 4.10.3). 

Los procesos de muestreo y retención se implementan respectivamente 

por medio de dispositivos electrónicos llamados convertidor análogo/digital 

(ADC) y un convertidor digital/análogo (DAC), los cuales convierten una 

señal continua (generalmente voltaje o corriente) en una señal discreta 

(binaria) o viceversa. En un ADC la señal continua se mantiene constante 

entre dos instantes de muestreo, lo cual corresponde a una DAC con un 

retenedor de orden cero.  

 

Fig. 1.15 Representación de la cuantificación de señales 

La cuantificación es el proceso de representación de una variable continua 

por medio de un conjunto finito de valores discretos (valores cuantificados) y 

depende del número de bits del convertidor, tal y como se muestra en la Fig. 

1.15. El error de cuantificación es el error (de truncamiento o redondeo) al 

aproximar un valor analógico a un nivel digital y que puede verse como un 

ruido llamado ruido de cuantificación. El nivel de cuantificación es el intervalo 

entre dos puntos adyacentes de decisión (máximo error de cuantificación). 

De esta manera, debido a un error de cuantificación una variable analógica con 

un valor dado conocido no tendrá el mismo valor exacto al discretizar y pasar 

a un sistema digital. 
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Una incorrecta selección del período de muestreo también puede llevar a 

un fenómeno de oscilaciones ocultas (intersample ripple, rizado intermuestreo) 

entre instantes de muestreo y que no se observan en la señal discreta, pero sí 

en la señal continua. La Fig. 1.16 explica el fenómeno. 

 

Fig. 1.16 Oscilaciones ocultas que aparecen debido a una selección incorrecta del período 

de muestreo  

En sistemas de control en lazo cerrado pueden aparecer oscilaciones 

ocultas por la pérdida de observabilidad al discretizar el modelo continuo con 

un período de muestreo incorrecto (ver la condición de regularidad del 

muestreo en la sección 4.10 sobre observabilidad). Dichas oscilaciones se 

pueden detectar físicamente en esos casos por un sonido parecido a un timbre 

en el actuador, o en simulación si se trabaja con la planta continua, la cual 

exige un paso del método numérico menor que el período de muestreo. 

1.5.3 Solución iterativa 

Una vez se tiene la ecuación en diferencias, esta puede resolverse 

iterativamente. La solución numérica iterativa o recursiva de una ecuación en 

diferencias implica el conocimiento de las condiciones iniciales y el despeje 

del término de mayor orden, luego se reemplazan las condiciones iniciales y 

se va hallando de manera progresiva los valores de la solución en los siguientes 

instantes de muestreo, por lo que en dicha solución solo es posible hallar la 

solución en el instante 𝑘 si se conocen todos los valores de la solución hasta el 

instante (𝑘 − 1). Si se convierte una ecuación en diferencias hacia delante en 
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una ecuación en diferencias hacia atrás, o viceversa, las condiciones iniciales no 

cambian. La solución iterativa se puede aplicar a ecuaciones en diferencias 

lineales y no lineales. De hecho, la aplicación de un método numérico a la 

solución de una ecuación diferencial (simulación, Capítulo 2) implica su 

transformación a una ecuación en diferencias [15].  

Por ejemplo, sea la siguiente ecuación en diferencias hacia delante de 

orden 2: 

𝑦(𝑘 + 2) + 0.5𝑦(𝑘 + 1) − 0.2𝑦(𝑘) = 1, 𝑦(0) = 1, 𝑦(1) = 0 

La solución iterativa, despejando el término de mayor orden, es: 

𝑦(𝑘 + 2) = −0.5𝑦(𝑘 + 1) + 0.2𝑦(𝑘) + 1 

Tomando 𝑘 = 0 y utilizando las condiciones iniciales: 

𝑦(2) = −0.5𝑦(1) + 0.2𝑦(0) + 1 = 1.2, 𝑦(2) = 1.2 

Tomando 𝑘 = 1 y utilizando las soluciones anteriores: 

𝑦(3) = −0.5𝑦(2) + 0.2𝑦(1) + 1 = 0.4, 𝑦(3) = 0.4 

El proceso se puede continuar para encontrar los valores siguientes. Es 

importante señalar que no es posible calcular el valor en el instante 𝑘 sin 

encontrar todos los valores anteriores. Por otro lado, no es necesario 

especificar el período de muestreo o paso, dado que una vez se conozca solo 

se requiere escalar correctamente los valores de la variable independiente:  se 

cambia por 𝑦(𝑘𝑇𝑠). 
Ver los ejercicios resueltos [4] 1.6 y los ejercicios propuestos [5] 1.5 en la 

web del libro. 

1.5.4 Solución analítica 

La solución analítica de las ecuaciones en diferencias lineales con coeficientes 

constantes (sección 2.7) es similar a la solución de las ecuaciones diferenciales 

ordinarias lineales con coeficientes constantes (sección 1.2): (1) solución de 

la ecuación homogénea por medio del planteamiento de la ecuación 

característica, cálculo de las raíces características y obtención de las 

respectivas funciones; (2) cálculo de una solución particular de la ecuación no 

homogénea por el método de coeficientes indeterminados o el método de 

https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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variación de las constantes; (3) obtención de la solución general como la suma 

de las dos soluciones anteriores; (4) obtención de la solución particular a partir 

de las condiciones iniciales (solución del problema de valor inicial).  

La solución analítica permite comprender mejor el comportamiento de los 

sistemas de tiempo discreto y, en particular, de su estabilidad: un sistema 

lineal de tiempo discreto es estable si el módulo de todas sus raíces 

características es menor o igual que uno; la estabilidad es asintótica si el 

módulo es estrictamente menor que uno, es decir, se encuentran dentro de un 

círculo unitario. 

Sea la siguiente ecuación en diferencias hacia delante lineal no homogénea 

con coeficientes constantes de orden 𝑛: 

 {
𝑦(𝑘 + 𝑛) + 𝑎1𝑦(𝑘 + 𝑛 − 1) + ⋯+ 𝑎𝑛𝑦(𝑘) = 𝑢(𝑘)

𝑦(0) = 𝑦01, 𝑦(1) = 𝑦02, ⋯ , 𝑦(𝑛 − 1) = 𝑦0𝑛        
 (1.35) 

Se resuelve inicialmente la ecuación homogénea: 

𝑦(𝑘 + 𝑛) + 𝑎1𝑦(𝑘 + 𝑛 − 1) + ⋯+ 𝑎𝑛𝑦(𝑘) = 0 

La solución se plantea de la siguiente manera: 𝑦(𝑘) = 𝜆𝑘 (en el caso 

continuo la solución de buscaba de la forma 𝑦 = 𝑒𝜆𝑡), lo cual da la siguiente 

ecuación característica: 

 𝜆𝑛 + 𝑎1𝜆
𝑛−1 +⋯+ 𝑎𝑛−1𝜆 + 𝑎𝑛 = 0 (1.36) 

Las raíces características pueden ser reales o complejas, simples o 

múltiples, y se pueden representar de manera general de la siguiente manera 

(debe trabajarse con la representación polar): 

 

𝜆 = 𝛼 ± 𝑖𝛽 = 𝑟𝑒𝑖𝜑       

𝑟 = √Re2(𝜆) + Im2(𝜆),    𝜑 = arctan
Im(𝜆)

Re(𝜆)
 

(1.37) 

A una raíz característica de multiplicidad 𝑚 de la forma anterior le 

corresponde la siguiente solución: 

 𝑦ℎ(𝑘) = 𝑟
𝑘 [
(𝑐1cos𝜑𝑘 + 𝑐2sen𝜑𝑘) + 𝑘(𝑐3cos𝜑𝑘 + 𝑐4sen𝜑𝑘) + ⋯

𝑘𝑚−1(𝑐2𝑚−1cos𝜑𝑘 + 𝑐2𝑚sen𝜑𝑘)
] (1.38) 
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En el caso particular de raíces reales que no se repiten {𝜆1, 𝜆2, ⋯ , 𝜆𝑛} se 

tiene: 

𝑦ℎ(𝑘) = 𝑐1𝜆1
𝑘 + 𝑐2𝜆2

𝑘 +⋯+ 𝑐𝑛𝜆𝑛
𝑘

 

Si una raíz característica es compleja, pero no se repite se tiene: 

𝑦ℎ(𝑘) = 𝑟
𝑘(𝑐1cos𝜑𝑘 + 𝑐2sen𝜑𝑘) 

La solución para el caso cuando una raíz real 𝜆 se repite 𝑚 veces es: 

𝑦ℎ(𝑘) = 𝜆
𝑘(𝑐1 + 𝑐2𝑘 + ⋯+ 𝑐𝑟𝑘

𝑚−1) 

De las expresiones anteriores se puede deducir que el sistema es estable si 

las raíces características están dentro del círculo unitario, es decir, |𝜆| < 1. 
La forma de la solución de la ecuación en diferencias en forma de una 

potencia de 𝜆 muestra que no interesan las raíces iguales a cero. Por lo tanto, la 

ecuación debe tener siempre el término 𝑦(𝑘) y, si no existe, entonces se 

puede hacer un cambio de variables, quitar condiciones iniciales y reescribir 

la ecuación. Por ejemplo, la siguiente ecuación se puede simplificar haciendo 

el cambio de variables 𝑘 → 𝑘 − 2 (el tiempo 0 equivale a 𝑘 = 2) y se eliminan 

las primeras dos condiciones iniciales que no las puede satisfacer la ecuación, 

donde 𝑢𝑠(𝑘 − 𝑛) es la función escalón unitario, y las dos primeras condiciones 

iniciales pasan a ser valores fijos (el resultado coincide con el de la 

transformada z de la sección 1.6): 

𝑦(𝑘 + 3) + 𝑎𝑦(𝑘 + 2) = 𝑢(𝑘), 𝑦(0) = 𝑦01, 𝑦(1) = 𝑦02, 𝑦(2) = 𝑦03 

Cambio de variable: 

𝑘 → 𝑘 − 2 

Se tiene: 

𝑦(𝑘 + 1) + 𝑎𝑦(𝑘) = 𝑢(𝑘 − 2)𝑢𝑠(𝑘 − 2), 𝑦(0) = 𝑦03 

Cuando el término independiente 𝑢(𝑘) tiene la siguiente forma puede 

aplicarse el método de coeficientes indeterminados, donde 𝐴𝑛, 𝐵𝑛, 𝑃𝑛 y 𝑄𝑛 

son polinomios del grado mayor igual a 𝑛, los dos primeros con coeficientes 

conocidos y los dos últimos con coeficientes indeterminados: 
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 𝑢(𝑘) = 𝜆𝑘[𝐴𝑛(𝑘)sen𝜑𝑘 + 𝐵𝑛(𝑘)cos𝜑𝑘] (1.39) 

El método de coeficientes indeterminados para un término independiente 

de la forma anterior propone hallar la solución particular de la ecuación no 

homogénea de la forma, donde 𝑚 es el número de veces que hay que 

multiplicar el término por 𝑘 para que la solución resultante no esté dentro de 

la solución complementaria: 

 𝑦𝑛ℎ(𝑘) = 𝑘
𝑚𝜆𝑘[𝑃𝑛(𝑘)sen𝜑𝑘 + 𝑄𝑛(𝑘)cos𝜑𝑘] (1.40) 

Ver los ejercicios resueltos [4] 1.8 y 1.9 y los ejercicios propuestos [5] 1.4 

en la web del libro. 

1.6 Transformada z  

1.6.1 Definición 

La transformada z es el equivalente para sistemas de tiempo discreto de la 

transformada de Laplace (sección 1.3) y, en general, la idea es la misma de la 

transformada de Laplace: convertir una ecuación o sistema de ecuaciones en 

diferencias lineales a una ecuación algebraica en el espacio complejo 𝑧 
utilizando unas expresiones y propiedades básicas que convierten una función 

𝑓(𝑘) en una función 𝐹(𝑧), realizar las operaciones en el espacio 𝑧 y, 

finalmente, regresar al espacio 𝑘 utilizando las mismas expresiones y 

propiedades básicas en sentido contrario, apoyado por el método de fracciones 

parciales. La transformada z permite, de esta manera, una operación más 

simple con sistemas dinámicos lineales de tiempo discreto. La transformada 

z fue introducida con ese nombre por Ragazzini y Zadeh en 1952. La 

transformada z modificada fue presentada por E. I. Jury en 1958. 

La transformada z puede calcularse directamente de la transformada de 

Laplace partiendo de la siguiente representación continua por partes 𝑦∗(𝑡) de 

una secuencia de variables discretas, donde 𝛿(𝑡 − 𝑘𝑇𝑠) es la función delta de 

Kronecker y 𝑇𝑠 es el período de muestreo (ver sección 1.5.2 sobre su 

definición y correcta selección): 

 𝑦∗(𝑡) =∑𝑦(𝑘𝑇𝑠)𝛿(𝑡 − 𝑘𝑇𝑠)
∞

𝑘=0

 (1.41) 

https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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La función delta de Kronecker es una función en el dominio discreto 

definida de la siguiente manera: 

 δ(𝑘 − 𝑛) ≡ δ𝑘𝑛 = {
1, 𝑘 = 𝑛

0, 𝑘 ≠ 𝑛
          𝑘, 𝑛 ∈ ℤ+ (1.42) 

La transformada de Laplace de la señal anterior tiene la siguiente forma: 

𝑌 ∗(𝑠) = ℒ{𝑦∗(𝑡)} =∑𝑦(𝑘𝑇𝑠)ℒ{𝛿(𝑡 − 𝑘𝑇𝑠)} =
∞

𝑘=0

∑𝑦(𝑘𝑇𝑠)𝑒
−𝑘𝑇𝑠𝑠

∞

𝑘=0

 

Se realiza el siguiente cambio de variable (esta expresión es fundamental, 

dado que define la relación entre el plano continuo y el discreto): 

 𝑧 = 𝑒𝑇𝑠𝑠, 𝑠 =
1

𝑇𝑠
ln 𝑧 (1.43) 

Lo anterior conlleva a la siguiente definición de la transformada z 

(unilateral), donde se omite el período de muestreo 𝑇𝑠: 

 𝑌 (𝑧) = 𝒵{𝑦(𝑘)} =∑𝑦(𝑘)𝑧−𝑘
∞

𝑘=0

 (1.44) 

Por ser la transformada z una serie infinita, al calcular la transformada de 

una función determinada es necesario especificar la región de convergencia 

(region of convergence, ROC). Sin embargo, para la solución de ecuaciones en 

diferencias esta información puede omitirse y manejarse implícitamente, es 

decir, al aplicar la transformada z se admite que hay una ROC y al aplicar la 

transformada inversa se entiende que se aplica bajo la suposición de esa ROC.  

Igualmente, la transformada z se aplica en realidad a una secuencia de 

números {𝑦(0), 𝑦(1), ⋯ }, por lo que el período de muestreo se puede omitir y 

asumirlo de manera implícita. Por ejemplo, si dos señales tienen diferente 

período de muestreo, pero su secuencia de números es la misma, entonces sus 

transformadas z son iguales, por lo que la función temporal discreta es única, 

aunque la función continua no lo es y queda clara una vez se conoce el período 

de muestreo: 

𝒵{2𝑡}|𝑇𝑠=1 = 𝒵{
√
2)𝑡}|𝑇𝑠=2 = 𝒵{2

𝑘} =
𝑧

𝑧 − 2
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Por la razón anterior, no es necesario especificar el período de muestreo en 

las fórmulas de la transformada z y se puede trabajar siempre con un 𝑇𝑠 = 1, 
pero sí es necesario especificar el período de muestreo si se discretiza un 

modelo continuo o si se quiere dar la respuesta temporal en unidad de tiempo 

y no en instantes de muestreo. 

Dada la definición (1.44) de transformada z, se puede ver que el valor 

temporal de la función en cada instante de muestreo puede obtenerse 

realizando una división larga entre los polinomios numerador y denominador: 

𝑌 (𝑧) =
𝑁(𝑧)

𝐷(𝑧)
= 𝑦(0) + 𝑦(1)𝑧−1 + 𝑦(2)𝑧−2 +⋯+ 𝑦(𝑖)𝑧−𝑖 +⋯ 

Por ejemplo, para la siguiente función se muestra la división larga y los 

valores de la secuencia de la transformada z inversa: 

𝑌 (𝑧) =
0.3(𝑧 − 2)

𝑧(𝑧 + 0.7)(𝑧 + 0.2)
  

      

Comparando los coeficientes dentro de cada recuadro con la definición de 

transformada z se tiene: 

𝑦(0) = 0, 𝑦(1) = 0, 𝑦(2) = 0.3, 𝑦(3) = −0.87, 𝑦(4) = 0.741,… 

En este caso, se puede observar que el número de valores iguales a cero al 

inicio de la serie es igual a la diferencia entre el grado del denominador y el 

grado del numerador de la transformada z (a esa diferencia se le llama el orden 

relativo). 

La transformada z se aplica a señales continuas sin retardo o con un retardo 

que es múltiplo del período de muestreo (𝜏 = 𝑑 ⋅ 𝑇𝑠) y que permite aplicar la 

propiedad de traslación. Sin embargo, si la señal tiene un retardo diferente es 

necesario aplicar la llamada transformada z modificada [16] [17]. Las 

funciones de MATLAB utilizan la transformada z modificada.  
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1.6.2 Transformadas básicas 

Aplicando la definición anterior se llega a las transformadas que se dan en la 

TABLA 1.3 de algunas funciones básicas. En esta se omiten la región de 

convergencia y el período de muestreo, puesto que no son necesarios para los 

cálculos que se requieren en este libro.  

TABLA 1.3. TRANSFORMADAS BÁSICAS Z 

𝑓(𝑘) 1 𝑘 𝑎𝑘 sen 𝑎𝑘 cos 𝑎𝑘 𝛿(𝑘 − 𝑛) 

𝐹(𝑧) 
𝑧

𝑧 − 1
 

𝑧

(𝑧 − 1)2
 

𝑧

𝑧 − 𝑎
 

𝑧 sen 𝑎

𝑧2 − 2𝑧 cos 𝑎 + 1
 

𝑧(𝑧 − cos 𝑎)

𝑧2 − 2𝑧 cos 𝑎 + 1
 𝑧−𝑛 

 

Es importante observar que la transformada z es una función propia o 

estrictamente propia y contiene siempre 𝑧 en el numerador, exceptuando la 

transformada z de la función delta. Si una transformada z no tiene 𝑧 en el 

numerador eso indica que hay un retardo o una función delta de Kronecker: 

𝑌 (𝑧) =
1

𝑧 − 1
=

𝑧

𝑧(𝑧 − 1)
  ↔    𝑦(𝑘) = 𝑢𝑠(𝑘 − 1) 

𝑌 (𝑧) =
1

𝑧 − 1
=
𝑧 − (𝑧 − 1)

𝑧 − 1
=
𝑧

𝑧 − 1
− 1  ↔    𝑦(𝑘) = 1 − 𝛿(𝑘) 

En general, una transformada z se puede expresar usando la función delta 

de Kronecker o la función escalón unitario: 

 

𝑢𝑠(𝑘 − 1) = 1 − 𝛿(𝑘), 𝛿(𝑘) = 1 − 𝑢𝑠(𝑘 − 1) 

𝑢𝑠(𝑘 − 𝑛) = 1 −∑𝛿(𝑘 − 𝑖)
𝑛−1

𝑖=0

 

𝛿(𝑘 − 𝑛) = 𝑢𝑠(𝑘 − 𝑛) − 𝑢𝑠(𝑘 − (𝑛 + 1)) 

(1.45) 

1.6.3 Propiedades operacionales 

Las propiedades de la transformada z se dan en la TABLA 1.4. Utilizando las 

propiedades de la transformada z es posible expresar una transformada z como 
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una ecuación en diferencias hacia atrás y de allí encontrar los valores 

temporales por medio de su solución iterativa: 

𝑌 (𝑧) =
𝑁(𝑧)

𝐷(𝑧)
=
𝑏0𝑧
𝑚 + 𝑏1𝑧

𝑚−1 +⋯+ 𝑏𝑚
𝑧𝑛 + 𝑎1𝑧

𝑛−1 +⋯+ 𝑎𝑛
 

𝑌 (𝑧) =
𝑏0𝑧
𝑚−𝑛 + 𝑏1𝑧

𝑚−𝑛−1 +⋯+ 𝑏𝑚𝑧
−𝑛

1 + 𝑎1𝑧
−1 +⋯+ 𝑎𝑛𝑧

−𝑛
 

Aplicando la transformada inversa z: 

𝑦(𝑘) + 𝑎1𝑦(𝑘 − 1) + ⋯𝑎𝑛𝑦(𝑘 − 𝑛) = 𝑏0𝛿(𝑘 +𝑚− 𝑛) + ⋯+ 𝑏𝑚𝛿(𝑘 − 𝑛) 

TABLA 1.4. PROPIEDADES DE LA TRANSFORMADA Z 

Propiedad 𝑓(𝑘) 𝐹(𝑧) 

Linealidad 𝑎𝑓1(𝑘) + 𝑏𝑓2(𝑘) 𝑎𝐹1(𝑧) + 𝑏𝐹2(𝑧) 

Traslación 

real hacia 

atrás 

𝑓(𝑘 − 𝑛) = 𝑓(𝑘 − 𝑛)𝑢𝑠(𝑘 − 𝑛) 𝑧−𝑛𝐹(𝑧) 

Traslación 

real hacia 

delante 

𝑓(𝑘 + 𝑛) 𝑧𝑛 [𝐹(𝑧) −∑𝑓(𝑘)𝑧−𝑘
𝑛−1

𝑘=0

] 

Traslación 

compleja 
𝑎𝑘𝑓(𝑘) 𝐹(𝑧/𝑎) 

Convolución  𝑓1(𝑘) ∗ 𝑓2(𝑘) = ∑ 𝑓1(𝑘 − 𝑖)𝑓2(𝑖)
𝑘

𝑖=0
 𝐹1(𝑧)𝐹2(𝑧) 

Sumatoria ∑𝑓(𝑘)
𝑘

𝑖=0

 
𝑧𝐹 (𝑧)

𝑧 − 1
 

Valor inicial lim
𝑘→0+
𝑓(𝑘) lim

𝑧→∞
𝐹(𝑧) 

Valor final lim
𝑘→∞
𝑓(𝑘), si existe lim

𝑧→1
(𝑧 − 1)𝐹(𝑧) 

Potenciación 𝑘𝑛𝑓(𝑘) (−𝑧
𝑑

𝑑𝑧
)
𝑛

𝐹(𝑧) 
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1.6.4 Transformada z inversa 

El cálculo de la transformada z inversa por medio de fracciones parciales 

entrega una solución analítica, mientras que los métodos de la división larga o 

paso a una ecuación en diferencias hacia atrás dan una solución numérica de 

manera simple y directa, permitiendo verificar la solución analítica. No 

siempre la utilización de las fracciones parciales es lo adecuado para el cálculo 

de la transformada inversa y debe pensarse siempre en las transformadas 

básicas y las propiedades operacionales en primer lugar. Por ejemplo: 

𝑌 (𝑧) =
1

𝑧20(𝑧 + 0.5)
=

𝑧

𝑧21(𝑧 + 0.5)
, 𝑦(𝑘) = 𝒵−1 {

𝑧

𝑧21(𝑧 + 0.5)
} 

𝑦(𝑘) = 𝒵−1 {
𝑧

𝑧 + 0.5
}|
𝑘→𝑘−21

𝑢𝑠(𝑘 − 21) = (−0.5)
𝑘−21𝑢𝑠(𝑘 − 21) 

Ver los ejercicios resueltos [4] 1.10 y 1.11, y los ejercicios propuestos [5] 

1.9, 1.10 y 1.11 en la web del libro. 

1.7 Función de transferencia de tiempo discreto 

1.7.1 Definición 

Igual que en el caso continuo, la función de transferencia para un sistema LTI 

de tiempo discreto (lineal invariable en el tiempo o lineal con coeficientes 

constantes) de una entrada y una salida (SISO, Single Input Single Output) es la 

relación entre la transformada z de la salida y la transformada z de la entrada 

suponiendo condiciones iniciales iguales a cero, utilizando las ecuaciones en 

diferencias hacia atrás: 

𝐺(𝑧) =
𝒵{𝑦(𝑘)}

𝒵{𝑢(𝑘)}
|
𝑐.𝑖.=0

=
𝑌 (𝑧−1)

𝑈(𝑧−1)
 

Una fracción impropia no tiene significado físico y corresponde a un modelo 

no causal; por ejemplo, la siguiente función de transferencia discreta genera 

una ecuación en diferencias donde la salida depende de una entrada futura: 

𝐺(𝑧) =
𝑌 (𝑧)

𝑈(𝑧)
=
𝑧2

𝑧 − 1
=

𝑧

1 − 𝑧−1
, 𝑦(𝑘) = 𝑦(𝑘 − 1) + 𝑢(𝑘 + 1) 

https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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El siguiente es un ejemplo de una función de transferencia discreta: 

𝐺(𝑧) =
𝑌 (𝑧)

𝑈(𝑧)
=
𝑧 − 0.5

𝑧(𝑧2 − 0.7)
 

𝑦(𝑘 + 3) − 0.7𝑦(𝑘 + 1) = 𝑢(𝑘 + 1) − 0.5𝑢(𝑘) 

Obtención de la respuesta temporal a partir de la función de transferencia: 

𝐺(𝑧) =
𝑌 (𝑧)

𝑈(𝑧)
, 𝑦(𝑡) = 𝒵−1{𝑌 (𝑧)} = 𝒵−1{𝐺(𝑧)𝑈(𝑧)} 

Los polos y ceros en el caso discreto se definen, respectivamente, de 

manera similar que en el caso continuo (sección 1.4.2): 

lim
𝑧→𝑝𝑖
𝐺(𝑧) = ∞,               lim

𝑧→𝑧𝑖
𝐺(𝑧) = 0 

Los polos determinan la estabilidad del sistema, de manera que para un 

sistema de tiempo discreto la estabilidad se logra si todos los polos tienen un 

módulo menor que uno (están dentro del círculo unitario), tal y como se 

muestra en la Fig. 1.6. Lo anterior se observa al dar la solución a partir de las 

raíces características: 

𝑦(𝑘) = |𝜆|𝑘(𝑐1 sen 𝜑𝑘 + 𝑐2 cos 𝜑𝑘)|𝜆| ⩽ 1 

Entre más cerca del centro del círculo unitario estén los polos del sistema 

de tiempo discreto, más rápidamente desaparece el efecto de ese polo en la 

respuesta temporal. A diferencia del caso continuo (sección 1.4.2), un polo 

insignificante está ubicado como máximo en el centro del círculo unitario (en 

el caso continuo se puede llevar a −∞). 

Dada la relación (1.43) entre las variables 𝑠 y 𝑧 (𝑧 = 𝑒𝑇𝑠𝑠) se puede ver que 

un polo o un cero estables continuos se convierte en un polo o cero discretos 

que tiende al límite del círculo unitario si el período de muestreo se hace cada 

vez más pequeño. Esta es una de las razones por las cuales no es práctico tomar 

un período de muestreo demasiado pequeño. 

El retardo en los modelos de tiempo discreto se representa como un 

número natural 𝑑 llamado retardo puro, el cual corresponde a la parte entera 

hacia abajo de la relación entre el retardo continuo y el período de muestreo 

(ver la sección 1.5.2 para más detalles): 



1. Fundamentos matemáticos de los sistemas dinámicos 

57 

 𝑑 = ⌊
𝜏

𝑇𝑠
⌋ (1.46) 

Dado que 𝒵{𝑓(𝑡 − 𝑑)} = 𝑧−𝑑𝐹(𝑧), la función de transferencia discreta con 

retardo toma la siguiente forma: 

 𝐺(𝑧) =
𝑁(𝑧)

𝐷(𝑧)
𝑧−𝑑 =

𝑏0𝑧
𝑚 + 𝑏1𝑧

𝑚−1 +⋯+ 𝑏𝑚−1𝑧 + 𝑏𝑚
𝑧𝑛 + 𝑎1𝑧

𝑛−1 +⋯+ 𝑎𝑛−1𝑧 + 𝑎𝑛
𝑧−𝑑 (1.47) 

A la diferencia entre el grado del denominador y el grado del numerador, 

sin tener en cuenta el retardo, se le denomina el orden relativo: 𝑛𝑟 = 𝑛−𝑚. 

Se recomienda no incluir el retardo puro en la definición del orden relativo en 

el caso discreto, así como no se incluye en el orden del sistema, dado que el 

retardo puro solo afecta la respuesta temporal con un desplazamiento y lo que 

queda de la función de transferencia da una mejor idea del comportamiento 

del sistema. Es decir, no es lo mismo tener un modelo discreto de orden 2 sin 

retardo que un modelo de orden 1 con un retardo de 1: 

𝐺1(𝑧) =
1

(𝑧 − 0.5)(𝑧 + 0.7)
, 𝐺2(𝑧) =

1

𝑧(𝑧 − 0.5)
 

El orden relativo incide en la respuesta temporal (sección 3.6) y frecuencial 

(sección 3.7), de manera que, por ejemplo, un sistema de orden dos tiene un 

comportamiento diferente si el orden relativo es dos, uno o cero (puede haber 

incluso una reducción del orden, como se muestra en la sección 1.4.3). Si un 

sistema continuo es de orden relativo igual a uno, entonces la pendiente de la 

respuesta temporal al inicio es diferente de cero, mientras que si es mayor que 

uno obligatoriamente habrá una pendiente igual a cero. 
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Fig. 1.17 Incidencia del orden relativo en la respuesta temporal a una entrada escalón 

unitario para una función de transferencia de orden 2 (a) de tiempo continuo y (b) tiempo 

discreto 

Si un sistema discreto tiene orden relativo diferente del orden, la respuesta 

temporal a un escalón aparentemente no cumple con el requisito de 

condiciones iniciales iguales a cero, tal y como se puede ver en la Fig. 1.17, 

pero eso se debe a que se debe trabajar con la ecuación en diferencias hacia 

atrás: 

 𝐺(𝑧) =
𝑏0 + 𝑏1𝑧

−1 +⋯+ 𝑏𝑚−1𝑧
−𝑚+1 + 𝑏𝑚𝑧

−𝑚

1 + 𝑎1𝑧
−1 +⋯+ 𝑎𝑛−1𝑧

−𝑛+1 + 𝑎𝑛𝑧
−𝑛
𝑧−(𝑑+𝑛𝑟) (1.48) 

La respectiva ecuación en diferencias hacia atrás es: 

𝑦(𝑘) + ⋯+ 𝑎𝑛𝑦(𝑘 − 𝑛) = 𝑏0𝑢(𝑘 − (𝑑 + 𝑛 −𝑚)) + ⋯+ 𝑏𝑚𝑢(𝑘 − (𝑑 + 𝑛)) 

En el caso de tiempo discreto el retardo total 𝑛𝑘 del sistema está formado 

por el retardo puro 𝑑 y el retardo intrínseco 𝑛𝑟, igual al orden relativo (ver la 

sección 1.7.2): 

 𝑛𝑘 = 𝑑 + 𝑛𝑟 (1.49) 

Una función de transferencia discreta en términos de 𝑧 y de orden 𝑛 con 

un polinomio numerador de orden 𝑚, es decir, de un orden relativo igual a 

(𝑛 −𝑚), tiene aparentemente (𝑛 −𝑚) valores iniciales iguales a cero y no 𝑛, 

como se indica en la definición de función de transferencia, pero eso solo se 
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debe a la presencia del numerador, el cual disminuye el orden aparente del 

modelo (de ahí la importancia del concepto de orden relativo, especialmente 

en el caso discreto). Si un modelo discreto no tiene ni retardo ni un polinomio 

mayor que cero en el numerador, entonces el número de condiciones iniciales 

iguales a cero es igual al orden del sistema, por lo que el numerador tiene un 

efecto de “adelantamiento” de la respuesta temporal. 

1.7.2 Discretización de la función de transferencia 

Los sistemas dinámicos modernos combinan sistemas de tiempo discreto, en 

forma de algoritmos implementados en computadores, microcontroladores u 

otros dispositivos, y sistemas de tiempo continuo, como procesos o plantas 

industriales, lo que exige la utilización de métodos que permitan estudiar 

matemáticamente sistemas que incluyan ambos tipos de sistemas. En la teoría 

de los sistemas de tiempo discreto se trabaja con modelos con señales de datos 

muestreados, pero realmente son modelos con señales digitales. El proceso 

contrario al muestreo se denomina reconstrucción, en la cual dada una 

secuencia de datos muestreados se obtiene una señal de tiempo continuo. La 

reconstrucción se implementa generalmente por medio de un retenedor de 

orden cero (Zero-Order Holder, ZOH), dispositivo electrónico que mantiene 

la señal constante entre instantes de muestreo, tal y como se muestra en la 

Fig. 1.18. 

 

Fig. 1.18 Proceso de muestreo y reconstrucción de señales 

Dada una ecuación diferencial ordinaria lineal con coeficientes constantes, 

es posible discretizarla aproximadamente utilizando un método numérico, 

para luego obtener la respectiva función de transferencia discreta aplicando la 

transformada z. Sin embargo, hay una manera de calcular directamente la 

función de transferencia discreta a partir de una función de transferencia 
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continua sin ninguna aproximación, pero suponiendo una discretización con 

un retenedor de orden cero.  

Para empezar, se obtiene la función de transferencia de un retenedor de 

orden cero a partir de su interpretación dada en la siguiente figura: 

 

Del primer diagrama se tiene, donde la salida del muestreador es una 

función delta de Dirac (sección 1.3): 

𝐻(𝑠) =
𝑋ℎ(𝑠)

𝑋∗(𝑠)
, 𝑋∗(𝑠) = ℒ{𝛿(𝑡)} = 1 

De acuerdo con el segundo gráfico, la salida del retenedor de orden cero es 

un pulso: 

𝑋ℎ(𝑠) = ℒ{𝑢𝑠(𝑡) − 𝑢𝑠(𝑡 − 𝑇𝑠)} =
1

𝑠
−
𝑒−𝑇𝑠𝑠

𝑠
 

Por lo tanto, la función de transferencia 𝐻(𝑠) de un retenedor de orden 

cero es: 

 𝐻(𝑠) =
1 − 𝑒−𝑇𝑠𝑠

𝑠
 (1.50) 

En el caso de muestreo de un modelo continuo lineal con un retenedor de 

orden cero se tiene: 

 

G(s)ZOH

Planta 
continua

G(z)
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El modelo continuo de la planta y el retenedor de orden cero es: 

 

𝐺𝐻(𝑠) =
1 − 𝑒−𝑇𝑠𝑠

𝑠
𝐺(𝑠) 

Aplicando la transformada z y sus propiedades:  

𝐺(𝑧) = 𝒵{ℒ−1{𝐺𝐻(𝑠)}} = 𝒵{ℒ−1 {
1 − 𝑒−𝑇𝑠𝑠

𝑠
𝐺(𝑠)}} 

𝐺(𝑧) = 𝒵{ℒ−1 {
𝐺(𝑠)

𝑠
} − ℒ−1 {

𝑒−𝑇𝑠𝑠𝐺(𝑠)

𝑠
}} 

Teniendo en cuenta que al retardo 𝑒−𝑇𝑠𝑠 le corresponde 𝑧−1, se tiene: 

𝐺(𝑧) = (1 − 𝑧−1)𝒵{ℒ−1 {
𝐺(𝑠)

𝑠
}} 

Omitiendo el símbolo de transformada inversa de Laplace (el cual se 

sobreentiende), la expresión final para la discretización con un retenedor de 

orden cero es: 

 𝐺(𝑧) = (1 − 𝑧−1)𝒵{
𝐺(𝑠)

𝑠
} (1.51) 

La expresión anterior, de otro lado, equivale a lo siguiente: 

𝐺(𝑧) =
𝒵{Respuesta a un escalón}

𝒵{escalón}
=
𝒵{𝐺(𝑠) 1𝑠}

𝑧
𝑧 − 1

 

La fórmula (1.51) es correcta si la entrada es muestreada con un retenedor 

de orden cero. La Fig. 1.19 compara la respuesta temporal a partir de la 

función de transferencia de tiempo discreto (círculos) y la compara con la 

respuesta temporal a partir del modelo continuo con la entrada sin retención 

(línea delgada) y con retención (línea gruesa), donde se observa que solo en 

el último caso se obtiene el resultado correcto. 
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Fig. 1.19 Discretización con un retenedor de orden cero 

Código de MATLAB para la obtención de la Fig. 1.19: 

G = tf(1, [6 1], 'InputDelay', 0.45); Gd = c2d(G, 0.2); t = 0:0.001:5; u1 = sin(2*t); u2 = roc(u1,t,0.2); t3 
= 0:0.2:t(end);  
u3 = sin(2*t3); y1 = lsim(G, u1, t); y2 = lsim(G, u2, t); y3 = lsim(Gd, u3, t3); plot(t, y1, ' b--', t, y2, 'r-', 
t3, y3,'ko') 
xlabel('t (seg)'), legend('y(t) sin entrada retenida', 'y(t) con entrada retenida', 'y(k) a partir de G(z)')  
function u1 = roc(u,t,Ts) % Función para la retención (ZOH) de señales 
N = length(u); tmax = t(end); NTs = floor(tmax/Ts); dt = tmax/(N-1); Ns = Ts/dt; u1 = zeros(1,N); 
for i=0:NTs 
    u1(1,i*Ns+1) = u(1,i*Ns+1); 
    for j=2:Ns 
        if i*Ns+j <= N 
            u1(i*Ns+j) = u1(i*Ns+1); 
        end 
    end 
end 

Si el sistema tiene un retardo que es múltiplo del período de muestreo 

(𝜏 = 𝑑 ⋅ 𝑇𝑠), entonces, 

 𝐺(𝑧) = 𝑧−𝑑(1 − 𝑧−1)𝒵{
𝐺(𝑠)

𝑠
} (1.52) 
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Si el sistema tiene un retardo que no es múltiplo del período de muestreo 

(𝜏 = 𝑑 ⋅ 𝑇𝑠 + 𝜏′), donde 0 < 𝜏′ < 1, entonces es necesario aplicar a la parte 

no entera 𝜏′ la llamada transformada z modificada 𝒵𝑚{𝑓(𝑘)}, la cual no se 

presenta en este libro, pero que se puede consultar en [17] o [16]. MATLAB 

incluye la función c2d que permite la discretización en cualquiera de los casos 

anteriores. Es decir,  

𝜏 = 𝑑 ⋅ 𝑇𝑠 + 𝜏
′, 𝑑 = ⌊

𝜏

𝑇𝑠
⌋ 

 𝐺(𝑧) = 𝑧−𝑑(1 − 𝑧−1)𝒵𝑚{
𝐺(𝑠)𝑒−𝜏′𝑠

𝑠
} (1.53) 

Es importante indicar que existen otros métodos de discretización, los 

cuales no se tratan en este libro, entre los cuales están: Tustin, mapeo de 

polos y ceros (Matched), invariancia al impulso y aproximación de primer orden 

(FOH). La función de MATLAB c2d incluye esos casos. Para ilustrar el método 

anterior, sea el siguiente modelo: 

𝐺(𝑠) =
𝑒−0.45𝑠

6𝑠 + 1
, 𝑇 = 0.2, 𝑑 = ⌊

𝜏

𝑇𝑠
⌋ = 2, 𝜏′ = 0.05 

Entonces, 

𝐺(𝑧) = 𝑧−2(1 − 𝑧−1)𝒵𝑚{
𝑒−0.05𝑠

𝑠(6𝑠 + 1)
} 

El resultado se muestra en la Fig. 1.20. El código de MATLAB es: 

G = tf([1], [6 1], 'InputDelay', 0.45); Gd = c2d(G, 0.2); step(G, Gd, 1) 
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Fig. 1.20 Comparación de la respuesta temporal de un modelo de tiempo continuo y su 

aproximación discreta con un retardo que no es múltiplo del período de muestreo 

En el caso de un retardo 𝜏 = 𝑑 ⋅ 𝑇𝑠 + 𝜏′ se puede ver que no es múltiplo 

del período de muestreo se obtiene un retardo puro adicional y una función 

de transferencia propia; es decir, 𝜏′ introduce en el modelo discreto un retardo 

puro y no un retardo intrínseco. La figura anterior muestra la razón para el 

aumento del retardo puro. En definitiva, el retardo total 𝑛𝑘 está dado por la 

siguiente expresión: 

 𝑛𝑘 = ⌊
𝜏

𝑇𝑠
⌋ + 1 (1.54) 

En general, el retardo total incluye todas las opciones de retardo posibles 

del modelo, dado que hay casos como el siguiente, donde el retardo intrínseco 

carece de sentido (el retardo total es igual a 1 y el retardo puro es igual a 2) y 

el modelo se puede explicar solo como la discretización de un modelo 

continuo que lleva a polos discretos muy cercanos al origen: 

𝐺(𝑧) =
𝑏1𝑧
2 + 𝑏2𝑧 + 𝑏3

(𝑧 + 𝑎1)(𝑧 + 𝜀1)(𝑧 + 𝜀2)
≃
𝑏1𝑧
2 + 𝑏2𝑧 + 𝑏3
𝑧2(𝑧 + 𝑎1)

𝜀𝑖 ≃ 0 

Ejemplo de MATLAB: 

G = zpk([], [-1, -100, -100], 10000); Gd = c2d(G, 0.1); 
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La relación entre las variables 𝑠 y 𝑧 está dada por la expresión (1.43), por 

lo cual, dando diferentes valores a la variable 𝑠 se obtienen los respectivos 

valores de la variable 𝑧, de acuerdo con la siguiente expresión: 

𝑧 = 𝑒𝑠𝑇𝑠 = 𝑒(𝛼+𝑖𝛽)𝑇𝑠 = 𝑒𝛼𝑇𝑠𝑒𝑖𝛽𝑇𝑠 = |𝑧|𝑒𝑖𝜑 

|𝑧| = 𝑒𝛼𝑇𝑠 , 𝜑 = 𝛽𝑇𝑠 

 

Fig. 1.21 Relación entre las variables 𝑠 y 𝑧 

Si 𝛼 = 0 y 𝛽 toma valores en el intervalo (−∞,+∞), entonces |𝑧| = 1 y 𝜑 

es un ángulo que toma valores en el intervalo (−∞,+∞), lo cual corresponde 

a un círculo unitario. Es decir, al eje imaginario (𝛼 = 0) le corresponde un 

círculo unitario, al semiplano izquierdo (𝛼 < 0) le corresponde la región 

interna del círculo unitario y al semiplano derecho (𝛼 > 0) le corresponde la 

región externa del círculo unitario. Para los anteriores y otros valores de 𝛼 y 𝛽, 

la Fig. 1.21 muestra la relación. Un hecho particular es que si 𝑇𝑠 → 0, 
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entonces 𝑧 → 1, es decir, no es una buena idea muestrear con un período muy pequeño, 

dado que las raíces discretas tenderán al círculo unitario y la estabilidad 

relativa no será la mejor. 

Ver los ejercicios propuestos [5] 1.12 y 1.16 en la web del libro. 

1.7.3 Interpretación de la función de transferencia 

La función de transferencia puede interpretarse tanto como una respuesta al 

impulso o una secuencia de ponderación de la entrada. En efecto, en el primer 

caso, si se supone que la entrada es un impulso unitario 𝛿(𝑡) o 𝛿(𝑘), para el 

caso continuo o discreto respectivamente, la transformada es igual a 1 y la 

respuesta temporal corresponde a la inversa de la función de transferencia, es 

decir: 

 

𝑌 (𝑠) = 𝐺(𝑠), 𝑔(𝑡) = 𝑦(𝑡) = ℒ−1{𝐺(𝑠)}

𝑌 (𝑧) = 𝐺(𝑧), 𝑔(𝑘) = 𝑦(𝑘) = 𝒵−1{𝐺(𝑧)}
 (1.55) 

De esta manera, para el caso discreto se tiene, según la definición de 

transformada z: 

𝐺(𝑧) =
𝑁(𝑧)

𝐷(𝑧)
=∑𝑔(𝑘)
∞

𝑘=0

𝑧−𝑘 = 𝑔(0) + 𝑔(1)𝑧−1 + 𝑔(2)𝑧−2 +⋯ 

La sumatoria puede obtenerse por división larga (ver sección 1.6.4), de 

manera que cuando 𝑦(0) = 0, entonces 𝑔(0) = 0. Esto implica que la fracción 

es estrictamente propia. De otro lado, de la definición de función de 

transferencia continua se tiene la siguiente expresión utilizando el teorema 

de convolución: 

𝑦(𝑡) = ℒ−1{𝐺(𝑠)𝑈(𝑠)} = ℒ−1{𝑔(𝑡)} ∗ ℒ−1{𝑢(𝑡)} = ∫𝑔(𝜏)𝑢(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 

Para el caso discreto se tiene: 

𝑦(𝑘) = 𝒵−1{𝐺(𝑧)𝑈(𝑧)} = 𝒵−1{𝑔(𝑘)} ∗ 𝒵−1{𝑢(𝑘)} =∑𝑔(𝑖)𝑢(𝑘 − 𝑖)
𝑘

𝑖=0

 

https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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La función de ponderación es una función continua 𝑤(𝑡) o discreta 𝑤(𝑘) 
que se utiliza en integrales y sumatorias para dar a algunos elementos más 

peso en el resultado. En los dos casos anteriores se observa que si se tiene 𝑔(𝑡) 
o 𝑔(𝑘), cada una de las cuales juega el papel de una función de pesos o 

ponderaciones de la entrada en cada instante del tiempo, es posible encontrar 

la respuesta temporal a cualquier tipo de entrada. El gráfico de la respuesta al 

impulso es una representación gráfica de la secuencia de ponderación, la cual, 

para el caso de sistemas asintóticamente estables es una secuencia que 

converge a cero, y para sistemas discretos corresponde a un filtro IIR (Infinite 

Impulse Response, Respuesta infinita al impulso, filtro cuya salida tiene un 

número infinito de términos) que se puede aproximar con un número finito 

de términos con un filtro FIR (Finite Impulse Response, Respuesta infinita al 

impulso, filtro cuya salida tiene un número finito de términos), dado que a 

partir de cierto valor los demás términos son tan pequeños que se pueden 

despreciar.  

Un filtro de señales es un sistema dinámico que transforma una señal 

dependiendo de la forma de su respuesta frecuencial (sección 3.7). De esta 

manera, las señales se pueden manipular por medio de filtros a través de los 

cuales pasan las señales y a la salida se obtiene una señal modificada. Un filtro 

analógico se construye con componentes físicos (circuitos eléctricos, por 

ejemplo), mientras que un filtro digital se construye en un dispositivo digital 

por medio de ecuaciones matemáticas. Tipos de filtro: pasabajas (sección 

3.7.5), pasaaltas, pasabanda, muesca, multibanda. 

Ver los ejercicios resueltos [4] 1.13 y 1.26, y los ejercicios propuestos [5] 

1.15 en la web del libro. 

1.8 Ecuaciones en el espacio de estado 

En las anteriores secciones se presentaron dos métodos matemáticos para el 

estudio de los sistemas dinámicos: las ecuaciones diferenciales o en 

diferencias y la función de transferencia. Aunque las ecuaciones diferenciales 

y en diferencias pueden aplicarse a sistemas no lineales, su ventaja está en el 

estudio de los sistemas lineales invariantes en el tiempo (LTI) y la 

generalización e interpretación de sus soluciones analíticas. De otro lado, la 

función de transferencia es un método solo para sistemas LTI. En esta sección 

se presenta el método del espacio de estado y de la ecuación de estado, el cual 

es el más general para modelar y simular sistemas lineales y no lineales con 

https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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parámetros concentrados. En el capítulo 2 se utilizan las ecuaciones de estado 

para la modelación y simulación. 

1.8.1 Conceptos básicos 

El método de las variables de estado es un poderoso método para la 

modelación matemática en el dominio del tiempo de sistemas dinámicos 

lineales y no lineales, invariables o variables en el tiempo, MIMO o SISO, 

dado que contiene la mayor información posible dada por sus variables de 

estado. Al modelo obtenido se le llama modelo interno, dado que entrega toda 

la información interna del sistema, aunque solo se midan algunas de sus 

variables o una combinación de ellas. A la función de transferencia y a la 

ecuación diferencial se le denomina modelos externos, pues solo interesa 

cómo se comportan las variables de salida (medidas) ante una variable de 

entrada determinada.  

Las variables de estado {𝑥1,𝑥2, ⋯ , 𝑥𝑛} de un sistema dinámico son el 

conjunto mínimo de 𝑛 variables tales que su conocimiento en un momento 

inicial 𝑡0, junto con las variables de entrada en un momento 𝑡 ⩾ 𝑡0, 
determinan totalmente el comportamiento futuro del sistema. Un modelo 

puede tener más de las variables necesarias (algunas variables son linealmente 

dependientes), pero solo las variables linealmente independientes son las variables 

de estado. Las variables de estado generalmente corresponden a grados de 

libertad (sección 1.1). El orden 𝑛 de un modelo está dado por esas 𝑛 variables 

de estado, lo cual corresponde a una realización mínima del modelo. El estado 

de un sistema dinámico corresponde al valor numérico de las variables de 

estado en un instante determinado 𝑡1: 

𝐱(𝑡1) = [𝑥1(𝑡1) 𝑥2(𝑡1) ⋯ 𝑥𝑛(𝑡1)]
𝑇

 

Por ejemplo, si el comportamiento de un sistema puede describirse 

completamente por su posición y velocidad, entonces su estado en un 

momento determinado puede ser: (1 m, 0.8 m/s). 

Cada una de las variables de estado conforman un espacio n-dimensional 

llamado espacio de estado. Una trayectoria de estado es una secuencia de 

puntos en el espacio de estado. En la Fig. 1.22 se muestra un espacio de estado 

de dos dimensiones (llamado, en ese caso particular, espacio de fase) y una 

trayectoria de estado para unas condiciones iniciales determinadas, dadas por 

el punto rojo. Un punto sobre la trayectoria de estado representa un estado 
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del sistema. La trayectoria de estado representa una idea de movimiento 

diferente al de la dependencia temporal de cada variable, cada una de las 

cuales se muestra en la Fig. 1.23 (se invita al lector a ver la relación entre 

ambas figuras); sin embargo, es importante resaltar que de una trayectoria de 

estado no se puede deducir la escala de tiempo de las respuestas temporales. 

 

Fig. 1.22 Ejemplo de un espacio de estado y una trayectoria de estado 

 

Fig. 1.23 Ejemplo de la dependencia del tiempo de las variables de estado (ver Fig. 1.22) 
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Las variables de estado se pueden agrupar en un vector de estado: 

 𝐱(𝑡) = [𝑥1(𝑡) 𝑥2(𝑡) ⋯ 𝑥𝑛(𝑡)]
𝑇

 (1.56) 

La ecuación de estado es un modelo matemático dado por un sistema de 

ecuaciones diferenciales (dinámicas) de primer orden que relaciona las 

variables de estado, tanto en tiempo continuo como discreto: 

 𝐱̇(𝑡) = 𝐟 [𝐱(𝑡), 𝐮(𝑡)]

𝑥𝑖̇(𝑡) = 𝑓𝑖[𝑥1(𝑡), . . . , 𝑥𝑛(𝑡), 𝑢1(𝑡), . . . , 𝑢𝑚(𝑡)]
 (1.57) 

 𝐱(𝑘 + 1) = 𝐟 [𝐱(𝑘), 𝐮(𝑘)]

𝑥𝑖(𝑘 + 1) = 𝑓𝑖[𝑥1(𝑘), . . . , 𝑥𝑛(𝑘), 𝑢1(𝑘), . . . , 𝑢𝑚(𝑘)]
 (1.58) 

En las expresiones anteriores, 𝐮 representa el vector de entrada, con cada 

una de las 𝑚 entradas (variable manipulable) del sistema dinámico: 

 𝐮 = [𝑢1 𝑢2 ⋯ 𝑢𝑚]𝑇  (1.59) 

La ecuación de salida de un sistema dinámico es el sistema de ecuaciones 

algebraicas (estáticas) que relacionan las 𝑝 variables de salida (variables 

medibles u observables), dadas en el vector de salida 𝐲, con las 𝑛 variables de 

estado (variables internas) y las 𝑚 variables de entrada (variables 

manipulables): 

 𝐲(𝑡) = 𝐠[𝐱(𝑡),𝐮(𝑡)]

𝑦𝑗(𝑡) = 𝑔𝑖[𝑥1(𝑡), . . . , 𝑥𝑛(𝑡), 𝑢1(𝑡), . . . , 𝑢𝑚(𝑡)]
 (1.60) 

 

 𝐲(𝑘) = 𝐠[𝐱(𝑘), 𝐮(𝑘)]

𝑦𝑗(𝑘) = 𝑔𝑖[𝑥1(𝑘), . . . , 𝑥𝑛(𝑘), 𝑢1(𝑘), . . . , 𝑢𝑚(𝑘)]
 (1.61) 

Donde 

 𝐲 = [𝑦1 𝑦2 ⋯ 𝑦𝑝]𝑇  (1.62) 

Las ecuaciones en el espacio de estado son el conjunto de la ecuación de 

estado y ecuación de salida para la modelación matemática de un sistema 

dinámico: 
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 {
𝐱̇(𝑡) = 𝐟 [𝐱(𝑡), 𝐮(𝑡)]

𝐲(𝑡) = 𝐠[𝐱(𝑡), 𝐮(𝑡)]
 (1.63) 

 {
𝐱(𝑘 + 1) = 𝐟 [𝐱(𝑘), 𝐮(𝑘)]

𝐲(𝑘) = 𝐠[𝐱(𝑘), 𝐮(𝑘)]    
 (1.64) 

Las ecuaciones en el espacio de estado con el mismo retardo continuo 𝜏  o 

retardo puro discreto 𝑑 (ver sección 1.4.1) en cada variable de entrada tienen 

la siguiente forma (en este libro se trata solo el retardo en las entradas, pero 

es posible utilizar retardos en las variables de estado):  

 {
𝐱̇(𝑡) = 𝐟[𝐱(𝑡), 𝐮(𝑡 − 𝜏)]

𝐲(𝑡) = 𝐠[𝐱(𝑡), 𝐮(𝑡 − 𝜏)]
 (1.65) 

 {
𝐱(𝑘 + 1) = 𝐟 [𝐱(𝑘), 𝐮(𝑘 − 𝑑)]

𝐲(𝑘) = 𝐠[𝐱(𝑘), 𝐮(𝑘 − 𝑑)]    
 (1.66) 

Las dos expresiones anteriores se simplifican considerablemente para el 

caso lineal invariable en el tiempo, en cuyo caso las ecuaciones toman las 

siguientes formas: 

 {
𝐱̇(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐮(𝑡 − 𝜏)

𝐲(𝑡) = 𝐂𝐱(𝑡) + 𝐃𝐮(𝑡 − 𝜏)
 (1.67) 

Donde 

𝐱(𝑡) ∈ ℝ𝑛×1, 𝐮(𝑡) ∈ ℝ𝑚×1, 𝐲(𝑡) ∈ ℝ𝑝×1   

𝐀 ∈ ℝ𝑛×𝑛, 𝐁 ∈ ℝ𝑛×𝑚, 𝐂 ∈ ℝ𝑝×𝑛, 𝐃 ∈ ℝ𝑝×𝑚 

Y, 

 {
𝐱(𝑘 + 1) = 𝚽𝐱(𝑘) + 𝚪𝐮(𝑘 − 𝑑)

𝐲(𝑘) = 𝐂𝐱(𝑘) +𝐃𝐮(𝑘 − 𝑑)    
 (1.68) 

Donde 

𝐱(𝑘) ∈ ℝ𝑛×1, 𝐮(𝑘) ∈ ℝ𝑚×1, 𝐲(𝑘) ∈ ℝ𝑝×1 

𝚽 ∈ ℝ𝑛×𝑛, 𝚪 ∈ ℝ𝑛×𝑚, 𝐂 ∈ ℝ𝑝×𝑛, 𝐃 ∈ ℝ𝑝×𝑚 
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En la sección 1.8.6 se muestra la equivalencia entre los dos modelos 

anteriores. En la sección 3.4 se muestra el proceso de linealización para 

transformar un modelo no lineal en uno lineal, pero válido solo cerca a cierto 

estado de interés. 

TABLA 1.5  VARIABLES DE ESTADO FÍSICAS A PARTIR DE LOS ELEMENTOS 

ALMACENADORES DE ENERGÍA 

Elemento almacenador de 

energía 
Energía 

Variable de estado 

física 

Capacitor C 𝐶𝑉 2/2 Voltaje 𝑉  

Inductor L 𝐿𝑖2/2 Corriente 𝑖 

Masa en movimiento m 𝑚𝑣2/2 Velocidad 𝑣 

Masa en reposo m 𝑚𝑔ℎ Posición o altura ℎ 

Momento de inercia J 𝐽𝜔2/2 Velocidad angular 𝜔 

Resorte k 𝑘𝑥2/2 Elongación 𝑥 

Condensador térmico C 𝐶𝑇 2/2 Temperatura 𝑇  

Densidad del líquido ρ en 

un tanque 
𝜌𝑔ℎ Nivel del tanque ℎ 

 

Las variables de estado pueden ser de varios tipos, cada una de las cuales 

se ejemplifica a lo largo del libro: 

• Variables físicas de estado: variables con significado físico conocido y 

que corresponden, generalmente, a elementos almacenadores de 

energía (TABLA 1.5). Estas son las variables que generalmente se 

utilizan en la representación de sistemas dinámicos reales y en la 

simulación, dado que hay interés en que las variables internas tengan 

significado. Estas variables son las más utilizadas a lo largo de este 

libro. 

• Variables de fase: variables que corresponden a una variable 

dependiente y sus primeras (𝑛 − 1) derivadas (ver sección 1.8.2). 

Estas variables no siempre tienen significado físico y se utilizan en 

procesos matemáticos, como la obtención de la ecuación de estado a 

partir de la ecuación diferencial, donde no interesa el comportamiento 

interno. 
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• Variables canónicas: para el caso lineal, son las variables seleccionadas 

de una manera especial para efectos de análisis o diseño. Por ejemplo, 

se tienen las variables en una forma canónica diagonal o de Jordan 

(sección 1.8.7), forma canónica controlable u observable (sección 

4.10.5), entre otras. La palabra canónico en ciencia se usa para indicar 

una elección especial, estándar, simple, ideal y natural de una serie de 

convenciones posibles; es algo estándar y no arbitrario. 

Como se mostrará en la sección 1.8.7 (transformaciones lineales), las 

formas anteriores son equivalentes matemáticamente y de ellas se puede 

obtener las mismas conclusiones, pero cada una tiene sus respectivas ventajas. 

Finalmente, las ecuaciones en el espacio de estado son la base para la 

simulación (capítulo 2), utilizando los llamados diagramas de estado, los 

cuales utilizan el concepto de integrador (caso continuo) u operador de 

desplazamiento hacia atrás (caso discreto) y que se describen en la sección 

2.6.  

En el capítulo 7 se explican varias ecuaciones de estado en variables físicas, 

las cuales se resumen a continuación.  

Ejemplo de una ecuación de estado no lineal no lineal de tiempo continuo 

(no se puede llevar a la forma matricial): 

{
𝑥1̇ = 𝑥2                          

𝑥2̇ = −
𝑔

𝑙
sen𝑥1 −

𝑓

𝑚
𝑥2 +

𝑢

𝑚𝑙

          𝑦 = 𝑥1 

El siguiente es un ejemplo de una ecuación de estado lineal de tiempo 

continuo en forma matricial: 

[

  
 
𝑥1̇
𝑥2̇
𝑥3̇
𝑥4̇]

  
 
=

[

 
 
 
 
 
0 0 1 0
0 0 0 1

−
𝑘1
𝑚1

0 −
𝑓1 + 𝑓3
𝑚1

𝑓3
𝑚1

0 −
𝑘2
𝑚2

𝑓3
𝑚2

−
𝑓2 + 𝑓3
𝑚2 ]

 
 
 
 
 

[

 
 

𝑥1
𝑥2
𝑥3
𝑥4]

 
 
+

[

 
 
 
 
 
0 0
0 0
1

𝑚1
0

0
1

𝑚2]

 
 
 
 
 

[
𝑢1
𝑢2
] 

𝐱̇ = 𝐀𝐱 +𝐁𝐮 

Este es un ejemplo de una ecuación de estado no lineal de tiempo discreto 

en diferencias hacia delante y un período de muestreo igual a 𝑇𝑠, el modelo 

lineal no se puede expresar de forma matricial: 
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{ 
 
  
𝑥1(𝑘 + 1) = 𝑥1(𝑘) + 𝑇𝑠𝑥2(𝑘)                                     

𝑥2(𝑘 + 1) = −
𝑔𝑇𝑠
𝑙
sen𝑥1(𝑘) + (1 −

𝑓𝑇𝑠
𝑚
)𝑥2(𝑘) +

𝑇𝑠
𝑚𝑙
𝑢(𝑘)

 

𝑦(𝑘) = 𝑥1(𝑘) 

La ecuación de estado lineal anterior en forma matricial es la siguiente: 

[
𝑥1(𝑘 + 1)

𝑥2(𝑘 + 1)
] = [

1 𝑇𝑠

−
𝑔𝑇𝑠
𝑙
1 −
𝑓𝑇𝑠
𝑚

][
𝑥1(𝑘)

𝑥2(𝑘)
] + [

0
𝑇𝑠
𝑚𝑙

]𝑢(𝑘) 

𝑦(𝑘) = [1 0] [
𝑥1(𝑘)

𝑥2(𝑘)
] 

𝐱(𝑘 + 1) = 𝚽𝐱(𝑘) + 𝚪𝑢(𝑘), 𝑦(𝑘) = 𝐂𝐱(𝑘) 

En los ejemplos anteriores 𝐃 = 0, lo cual es equivalente a una función de 

transferencia estrictamente propia, algo común en los procesos, pero no en el 

diseño de controladores, donde puede darse que 𝐃 ≠ 0 o que la función de 

transferencia sea propia. En las siguientes secciones se tratan más a fondo los 

temas relacionados con la ecuación de estado lineal con coeficientes 

constantes, lo cual permite entender mejor el comportamiento de los sistemas 

lineales, aunque sea en una región cerca de un estado de interés (los modelos 

no lineales no se pueden resolver). 

 

1.8.2 Ecuación de estado a partir de la ecuación diferencial o en diferencias 

La ecuación de estado es el método más general de modelación matemática y 

es aplicable a sistemas lineales y no lineales, de tiempo continuo y discreto. 

Por lo tanto, la transformación de cualquier modelo a una ecuación de estado 

es una operación importante. Además, como se estudia en la sección 2.6, la 

ecuación de estado es la base para la simulación (métodos numéricos), dado 

que solo es necesario desarrollar métodos numéricos para ecuaciones 

diferenciales de primer orden. El método general de transformación de una 

ecuación diferencial o en diferencias a una ecuación de estado se basa en el 

concepto de las variables de fase, mencionadas en la sección anterior. En 

primer lugar, se presenta el método para el caso cuando el término 



1. Fundamentos matemáticos de los sistemas dinámicos 

75 

independiente no depende de las derivadas de la entrada y más adelante 

cuando sí depende, algo que lleva al concepto de ceros, tal y como se explica 

en la sección 1.4.2. Sea la siguiente ecuación diferencial no lineal: 

𝐹 (𝑡, 𝑢, 𝑦, 𝑦,̇ 𝑦,̈ . . . , 𝑦
(𝑛)
) = 0, 𝑦 ̇ =

𝑑𝑦

𝑑𝑡
 , 𝑦
(𝑛)
=
𝑑𝑛𝑦

𝑑𝑡𝑛
 

Con respecto a la derivada de mayor orden, la ecuación tiene la siguiente 

forma: 

 

{ 
 
  𝑦
(𝑛)
= 𝑓 (𝑡, 𝑢, 𝑦, 𝑦,̇ 𝑦,̈ . . . , 𝑦

(𝑛−1)
)             

𝑦(0) = 𝑦01, 𝑦(̇0) = 𝑦02, ⋯ , 𝑦
(𝑛−1)
(0) = 𝑦0𝑛

 (1.69) 

Se definen las siguientes variables de fase: 

 𝑥1 = 𝑦, 𝑥2 = 𝑦, 𝑥3 = 𝑦,̈ ⋯ 𝑥𝑛 = 𝑦
(𝑛−1)

 (1.70) 

Derivando cada una de las variables de estado anteriores y reemplazando 

en la última ecuación la ecuación (1.69) se obtiene la ecuación de estado en 

variables de fase: 

 

{
 
 

 
 𝑥1̇ = 𝑥2                       

𝑥2̇ = 𝑥3                       
⋮                       

𝑥𝑛̇ = 𝑓(𝑡, 𝑢, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛)

       {
𝐱̇ = 𝑓(𝑡, 𝑢, 𝐱)
𝑦 = 𝑥1        

   

𝐱(0) =

[

 
 
 
𝑦(0)

𝑦(̇0)
⋮

𝑦
(𝑛−1)
(0)]

 
 
 

 

(1.71) 

Las ecuaciones de estado se pueden representar gráficamente utilizando 

diagramas de estado (sección 2.6), lo cual es útil para la solución numérica y 

la simulación de sistemas dinámicos. 

Para el caso lineal con coeficientes constantes la ecuación diferencial es: 

𝑦
(𝑛)
+ 𝑎1 𝑦

(𝑛−1)
+. . .+𝑎𝑛−1𝑦̇ + 𝑎𝑛𝑦 = 𝑢(𝑡) 
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La respectiva ecuación de estado es: 

  

{
𝐱̇ = 𝐀𝐱 +𝐁𝑢
𝐲 = 𝐂𝐱        

𝐀 =

[

 
 
 
 
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1
−𝑎𝑛 −𝑎𝑛−1 −𝑎𝑛−2 ⋯ −𝑎1]

 
 
 
 

  𝐁 =

[

 
 
 
 
0
0
⋮
0
1]

 
 
 
 

  𝐂 = [1 0 ⋯ 0]
 (1.72) 

En el caso de la ecuación en diferencias se obtiene una expresión similar, 

la cual se presenta para el caso lineal: 

𝑦(𝑘 + 𝑛) + 𝑎1𝑦(𝑘 + 𝑛 − 1)+. . . +𝑎𝑛−1𝑦(𝑘 + 1) + 𝑎𝑛𝑦(𝑘) = 𝑢(𝑘) 

 

{
𝐱(𝑘 + 1)= 𝚽𝐱(𝑘)+𝚪𝐮(𝑘)

𝐲(𝑘) = 𝐂𝐱(𝑘) +𝐃𝐮(𝑘)  
 

𝚽 =

[

 
 
 
 
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1
−𝑎𝑛 −𝑎𝑛−1 −𝑎𝑛−2 ⋯ −𝑎1]

 
 
 
 

    𝚪 =

[

 
 
 
 
0
0
⋮
0
1]

 
 
 
 

 

𝐂 = [1 0 ⋯ 0] 

(1.73) 

Cuando la ecuación diferencial tiene derivadas de la variable de entrada y 

el término independiente es lineal, las variables de fase se definen de manera 

diferente para evitar que la ecuación de estado contenga derivadas de la 

entrada. El método general para un término independiente con una derivada 

de orden 𝑟 < 𝑛 de la entrada consiste en introducir en la última variable de 

fase 𝑥𝑛 las derivadas de la entrada hasta (𝑟 − 1)  y en las anteriores variables 

de estado las derivadas de la entrada con un orden menor, de manera 

triangular. El paso de una ecuación en diferencias con diferencias en la entrada 

a una ecuación de estado de tiempo discreto se hace de una manera similar. 

Otra forma de realizar la transformación cuando las condiciones iniciales son 

iguales a cero es convertir la ecuación diferencial o ecuación en diferencias a 

una función de transferencia y de ahí pasar a la ecuación de estado, tal y como 

se explica en la sección 1.9.  
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Ver los ejercicios resueltos [4] 1.15 y los ejercicios propuestos [5] 1.18 en 

la web del libro. 

1.8.3 Solución de la ecuación de estado homogénea lineal de tiempo continuo por 

valores y vectores propios 

La ecuación de estado lineal con coeficientes constantes (LTI) se puede 

resolver por varios métodos, cada uno de los cuales se presenta a continuación 

[9]. El método más directo, pero menos interesante, en el caso SISO consiste 

en convertir la ecuación de estado en una sola ecuación diferencial ordinaria y 

resolverla (un proceso que solo da la solución de la variable de salida y no de 

todas las variables internas de estado). Aunque en la práctica la herramienta 

más utilizada para la solución de estas ecuaciones son los métodos numéricos 

(simulación) para la obtención de una solución numérica, la solución analítica 

permite comprender mejor el comportamiento general de la solución en 

dependencia de los parámetros del modelo. Además, es necesario resolver 

muchas ecuaciones por el método propuesto para así dominar la técnica 

matemática y poder concentrarse en el análisis del resultado y desarrollar la 

intuición matemática (un buen dominio de la técnica implica visualizar la 

forma de la solución en casos simples sin requerir la realización de los 

cálculos). A continuación, se resuelve la ecuación de estado por el método de 

los valores y vectores propios (la ecuación de salida no se requiere o se puede 

asumir que la salida es todo el estado). Sea 

𝐱̇ = 𝐀𝐱 +𝐁𝐮 

Al igual que en el caso de las ecuaciones diferenciales ordinarias (sección 

1.2), se resuelve primero la ecuación homogénea, sin el término 

independiente: 

 𝐱̇ = 𝐀𝐱 (1.74) 

De manera similar a las ecuaciones diferenciales, donde la solución de la 

ecuación homogénea se obtiene en la forma 𝑦 = 𝑒𝜆𝑡 que conduce a la ecuación 

característica, la solución de la ecuación anterior se puede hallar de la 

siguiente manera, donde, dado que 𝐱 es un vector, la solución debe incluir un 

vector 𝐯: 

https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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 𝐱 = 𝐯𝑒𝜆𝑡 (1.75) 

Reemplazando la solución propuesta en la ecuación homogénea se obtiene: 

𝜆𝐯𝑒𝜆𝑡 = 𝐀𝐯𝑒𝜆𝑡 

Cancelando el término exponencial: 

𝜆𝐯 = 𝐀𝐯 

Organizando los términos: 

 (𝜆𝐈 −𝐀)𝐯 = 0 (1.76) 

La ecuación anterior tiene una solución con vectores no nulos si y 

solamente si: 

 |𝜆𝐈 − 𝐀| = 0 (1.77) 

Las ecuaciones anteriores corresponden al problema de valores y vectores 

propios y la ecuación (1.77) es la misma ecuación característica de la ecuación 

diferencial ordinaria, algo de esperar, dada la correspondencia entre la 

ecuación de estado y la ecuación diferencial. Los valores propios corresponden 

a los polos de la función de transferencia o raíces características de la ecuación 

diferencial (los ceros de un modelo MIMO se tratan en la sección 1.4.2). Por 

lo tanto, se deben analizar tres posibles casos de valores propios: (1) reales sin 

repetir, (2) complejos sin repetir y (3) repetidos. En el caso de valores propios 

reales sin repetir la solución de la ecuación de estado homogénea es: 

 𝐱 = 𝑐1𝐯1𝑒
𝜆1𝑡 + 𝑐2𝐯2𝑒

𝜆2𝑡 +⋯ (1.78) 

En el caso de valores propios complejos (𝜆 = 𝛼 + 𝑖𝛽 y su conjugada), se 

tiene: 

 𝐱 = 𝑐1Re{𝐯1𝑒
𝜆𝑡} + 𝑐2Im{𝐯1𝑒

𝜆𝑡} + ⋯ (1.79) 

Si se tienen valores propios repetidos con una multiplicidad geométrica 

igual a la multiplicidad algebraica, entonces se aplican las dos expresiones 

anteriores sin ningún problema. En caso contrario, la solución toma la 

siguiente forma (en el caso de valores propios complejos se expresa la función 

exponencial como seno y coseno): 
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𝐱 = 𝑐1𝐯𝑒
𝜆𝑡 + 𝑐2(𝐯𝑡 + 𝐯𝑔1)𝑒

𝜆𝑡 + 𝑐3 (
1

2!
𝐯𝑡2 + 𝐯𝑔1𝑡 + 𝐯𝑔2) 𝑒

𝜆𝑡 +⋯

= (𝑐1𝐯 + 𝑐2𝐯𝑔1 +⋯)𝑒
𝜆𝑡 + (𝑐2𝐯 + 𝑐3𝐯𝑔1 +⋯)𝑡𝑒

𝜆𝑡

+
1

2!
(𝑐3𝐯 + 𝑐4𝐯𝑔1)𝑡

2𝑒𝜆𝑡 +⋯ 

(1.80) 

Donde 𝐯 es el vector propio y 𝐯𝑔𝑖 conforman los vectores propios 

generalizados. En efecto, si se busca una segunda solución en la forma 𝐱 =
(𝐯𝑡 + 𝒂)𝑒𝜆𝑡 (con 𝒂 = 0, de manera similar a las ecuaciones diferenciales, no 

se obtiene una solución): 

𝐱̇ = 𝐯𝑒𝜆𝑡 + 𝜆(𝒂 + 𝐯𝑡)𝑒𝜆𝑡 

Reemplazando en la ecuación de estado, destruyendo los paréntesis y 

agrupando se tiene: 

𝐯𝑒𝜆𝑡 + 𝜆𝒂𝑒𝜆𝑡 + 𝜆𝐯𝑡𝑒𝜆𝑡 = 𝐀𝒂𝑒𝜆𝑡 +𝐀𝐯𝑡𝑒𝜆𝑡, (𝜆𝐈 −𝐀)𝒂 = −𝐯 

El último término corresponde a la forma de los valores propios 

generalizados, es decir, 

𝒂 = 𝐯𝑔 

La multiplicidad algebraica (ma) es igual al número de veces que un valor 

propio es solución de la ecuación característica. Para el caso de un valor propio 

múltiple, el número de vectores propios linealmente independientes que le 

corresponden se denomina multiplicidad geométrica (mg): 

 mg(𝜆) = 𝑛 − rank(𝜆𝐈 −𝐀) ≤ ma(𝜆) (1.81) 

La multiplicidad geométrica (mg) es igual o menor que la multiplicidad 

algebraica (ma). Si la multiplicidad geométrica es menor que la algebraica se 

dice que el valor propio es defectuoso y es necesario completar el conjunto de 

vectores linealmente independientes con los llamados vectores propios 

generalizados, los cuales se calculan de la siguiente manera:  

 (𝜆𝑖𝐈 − 𝐀)𝐯𝑖1 = 0 

(𝜆𝑖𝐈 − 𝐀)𝐯𝑖2 = −𝐯𝑖1, (𝜆𝑖𝐈 − 𝐀)𝐯𝑖3 = −𝐯𝑖2,⋯ 

(1.82) 
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Las expresiones anteriores se pueden escribir de la siguiente forma, donde 

𝐅(𝑡) es la matriz fundamental y su determinante corresponde al wronskiano, 

el cual debe ser diferente de cero en un intervalo (igual al eje real para el caso 

de ecuaciones de estado con coeficientes constantes) para que las soluciones 

sean linealmente independientes (por lo tanto, la inversa de la matriz 𝐅 existe 

para todo valor de 𝑡): 

𝐱ℎ(𝑡) = 𝐅(𝑡) [

𝑐1
𝑐2
⋮
] = 𝐅(𝑡)𝐜, 𝐅(𝑡) = [𝐯1𝑒

𝜆1𝑡 𝐯2𝑒
𝜆2𝑡 ⋯] ∈ ℝ𝑛×𝑛 

Para las condiciones iniciales en 𝑡 = 0 se tiene: 

𝐱(0) = 𝐅(0)𝐜, 𝐜 = 𝐅−1(0)𝐱(0) 

De esta manera, la solución de la ecuación de estado homogénea se puede 

escribir de la siguiente forma: 

 𝐱ℎ(𝑡) = 𝐅(𝑡)𝐅
−1(0)𝐱(0) = 𝚽(𝑡)𝐱(0) (1.83) 

Donde 𝚽(𝑡) es la matriz de transición del estado, la cual se analiza con 

detalle en la sección 1.8.5: 

 𝚽(𝑡) = 𝐅(𝑡)𝐅−1(0)𝐅(𝑡) = 𝚽(𝑡)𝐅(0)𝐅−1(𝑡) = 𝐅−1(0)𝚽−1(𝑡) (1.84) 

Para hallar una solución particular de la ecuación no homogénea se puede 

utilizar el método de coeficientes indeterminados o el método de variación de 

las constantes. El método de coeficientes indeterminados se aplica cuando el 

término independiente 𝐁𝐮(𝑡) tiene esta forma (combinación de polinomios, 

exponenciales, senos, cosenos o cierta combinación de dichas funciones), 

donde 𝐩𝑖 y 𝐪𝑖 son vectores columna): 

 𝐁𝐮(𝑡) = 𝑒𝛼𝑡[(𝐩1 + 𝐩2𝑡 + ⋯ ) cos 𝛽𝑡 + (𝐪1 + 𝐪2𝑡 + ⋯ ) sen 𝛽𝑡] (1.85) 

En ese caso la solución tiene la siguiente forma, donde 𝒂𝑖 y 𝐛𝑖 son vectores 

columna con coeficientes indeterminados: 

 𝐱𝑛ℎ(𝑡) = 𝑒
𝛼𝑡[(𝒂1 + 𝒂2𝑡 + ⋯ ) cos 𝛽𝑡 + (𝐛1 + 𝐛2𝑡 + ⋯ ) sen 𝛽𝑡] (1.86) 
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Si parte de la solución no homogénea está 𝑟 veces en la solución 

homogénea, entonces es necesario aumentar el grado de los polinomios en la 

expresión anterior en 𝑟 grados. 

En el método de variación de las constantes se propone hallar la solución 

en una forma donde se cambian las constantes arbitrarias por funciones. Sea 

𝐱̇ = 𝐀𝐱 +𝐁𝐮 

La solución de la ecuación homogénea es: 

𝐱ℎ(𝑡) = 𝐅(𝑡)𝐜 

Se busca la solución en la forma: 

𝐱𝑛ℎ(𝑡) = 𝐅(𝑡)𝐂(𝑡) 

Se deriva la solución particular y se reemplaza en la ecuación no 

homogénea: 

𝐅̇(𝑡)𝐂(𝑡) + 𝐅(𝑡)𝐂(̇𝑡) = 𝐀𝐅(𝑡)𝐂(𝑡) + 𝐁𝐮(𝑡) 

Dado que 𝐅(𝑡) satisface la ecuación de estado, entonces 𝐅̇(𝑡) = 𝐀𝐅(𝑡) y 

reemplazando en la ecuación anterior se obtiene: 

𝐀𝐅(𝑡)𝐂(𝑡) + 𝐅(𝑡)𝐂(̇𝑡) = 𝐀𝐅(𝑡)𝐂(𝑡) + 𝐁𝐮(𝑡) 

Simplificando: 

𝐅(𝑡)𝐂(̇𝑡) = 𝐁𝐮(𝑡) 

Despejando: 

𝐂(̇𝑡) = 𝐅−1(𝑡)𝐁𝐮(𝑡) 

Integrando: 

𝐂(𝑡) = ∫𝐅−1(𝜏)𝐁𝐮(𝜏)𝑑𝜏  

La solución de la ecuación no homogénea es: 

𝐱𝑛ℎ(𝑡) = 𝐅(𝑡)∫𝐅
−1(𝜏)𝐁𝐮(𝜏)𝑑𝜏  
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La solución general de la ecuación de estado no homogénea es: 

𝐱(𝑡) = 𝐅(𝑡)𝐜 + 𝐅(𝑡)∫𝐅−1(𝜏)𝐁𝐮(𝜏)𝑑𝜏  

Utilizando las condiciones iniciales, además de la expresión (1.84) y una de 

las propiedades de matriz de transición del estado dada en la sección 1.8.5 

(𝚽−1(𝑡) = 𝚽(−𝑡)), se llega a la siguiente forma, en términos de la matriz de 

transición del estado: 

 𝐱(𝑡) = 𝚽(𝑡)𝐱(0) + 𝚽(𝑡)∫𝚽(−𝜏)𝐁𝐮(𝜏)𝑑𝜏

𝑡

0

 (1.87) 

Como en (1.84), se tiene que 𝚽(𝑡) = 𝐅(𝑡)𝐅−1(0). Se observa que 𝚽(𝑡) no 

depende del término independiente y puede hallarse a partir de la solución 

de la ecuación homogénea. 

En la sección 1.8.7 se presenta un método para transformar la ecuación de 

estado a una forma especial, la cual es más simple de resolver. Por ejemplo, si 

se puede llevar la matriz 𝐀 de la ecuación de estado a una forma diagonal, 

entonces una ecuación de orden 𝑛 se reduce a la solución de 𝑛 ecuaciones 

diferenciales lineales de orden 1, mucho más simples de resolver. 

Ver los ejercicios resueltos [4] 1.16 a 1.19, y los ejercicios propuestos [5] 

1.19 en la web del libro. 

1.8.4 Solución de la ecuación de estado lineal de tiempo continuo por 

transformada de Laplace  

La solución de la ecuación de estado lineal de tiempo continuo por el método 

de la transformada de Laplace (sección 1.3) es más directo y sencillo: 

𝐱̇ = 𝐀𝐱 +𝐁𝐮 

Transformada de Laplace de cada término: 

𝑠𝐗(𝑠) − 𝐱(0) = 𝐀𝐗(𝑠) + 𝐁𝐮(𝑠) 

𝐗(𝑠) = (𝑠𝐈 −𝐀)−1𝐱(0) + (𝑠𝐈 −𝐀)−1𝐁𝐮(𝑠) 

𝐱(𝑡) = ℒ−1{(𝑠𝐈 −𝐀)−1}𝐱(0) + ℒ−1{(𝑠𝐈 −𝐀)−1𝐁𝐮(𝑠)} 

https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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Sea la siguiente matriz (llamada matriz de transición del estado): 

 𝚽(𝑡) = ℒ−1{(𝑠𝐈 −𝐀)−1} (1.88) 

Aplicando el teorema de convolución de la transformada de Laplace: 

ℒ−1{(𝑠𝐈 −𝐀)−1𝐁𝐮(𝑠)} = ℒ−1{𝑠𝐈 −𝐀)−1} ∗ ℒ−1{𝐁𝐮(𝑠)}

= ∫𝚽(𝑡 − 𝜏)𝐁𝐮(𝜏)𝑑𝜏

𝑡

0

 

Finalmente, 

 𝐱(𝑡) = 𝚽(𝑡)𝐱(0) +∫𝚽(𝑡 − 𝜏)𝐁𝐮(𝜏)𝑑𝜏

𝑡

0

 (1.89) 

Teniendo en cuenta las propiedades de la matriz de transición del estado 

𝚽(𝑡) que se exponen a continuación en la sección 1.8.5, se obtiene la misma 

expresión de la ecuación (1.87). Cambiando el tiempo inicial a 𝑡0 se obtiene: 

 𝐱(𝑡) = 𝚽(𝑡 − 𝑡0)𝐱(𝑡0) + ∫𝚽(𝑡 − 𝜏)𝐁𝐮(𝜏)𝑑𝜏

𝑡

𝑡0

 (1.90) 

De la expresión (1.89) se puede ver que cuando la entrada es un escalar e 

igual a una función delta de Dirac (sección 1.3) 𝛿(𝑡), entonces el modelo es 

equivalente a uno sin entrada y con condiciones iniciales iguales a [𝐱(0) + 𝐁]. 
Es decir, una entrada extremadamente grande al inicio incrementa las 

condiciones iniciales en un valor finito que depende de la matriz 𝐁: 

𝐱(𝑡) = 𝚽(𝑡)𝐱(0) +∫𝚽(𝑡 − 𝜏)𝐁δ(𝜏)𝑑𝜏

𝑡

0

= 𝚽(𝑡)𝐱(0) + 𝚽(𝑡)𝐁 

Lo cual equivale a la solución de la siguiente ecuación de estado: 

𝐱̇ = 𝐀𝐱, 𝐱(0) = 𝐱0 +𝐁 

Se invita al lector a obtener la matriz de transición del estado de los 

ejemplos de la sección anterior utilizando la transformada de Laplace. 
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Ver los ejercicios resueltos [4] 1.20 y los ejercicios propuestos [5] 1.20 en 

la web del libro. 

1.8.5 Matriz de transición del estado y el método de las series de potencias 

La matriz de transición de estado, dada por las ecuaciones  (1.84) y (1.88), 

juega un papel importante tanto en la solución de la ecuación de estado como 

en su discretización (sección 1.8.6), por lo que es importante conocer sus 

propiedades. Dicha matriz se puede calcular por medio de una serie de 

potencias, tal y como se muestra a continuación. Sea 

𝐱̇ = 𝐀𝐱 

La solución de esta ecuación se busca ahora por medio de una serie de 

potencias: 

𝐱(𝑡) = 𝐚0 + 𝐚1𝑡 + 𝐚2𝑡
2 + 𝐚3𝑡

3 +⋯ 

Derivando: 

𝐱̇ = 𝐚1 + 2𝐚2𝑡 + 3𝐚3𝑡
2 +⋯ 

Reemplazando en la ecuación de estado: 

𝐚1 + 2𝐚2𝑡 + 3𝐚3𝑡
2 +⋯ = 𝐀(𝐚0 + 𝐚1𝑡 + 𝐚2𝑡

2 + 𝐚3𝑡
3 +⋯) 

Igualando los términos semejantes: 

𝐚1 = 𝐀𝐚0𝐚2 =
1

2
𝐀𝐚1 =

1

2
𝐀2𝐚0𝐚3 =

1

3
𝐀𝐚2 =

1

2 ⋅ 3
𝐀3𝐚0⋯ 

Reemplazando en solución en forma de serie se obtiene: 

𝐱(𝑡) = 𝐚0 +𝐀𝐚0𝑡 +
1

2
𝐀2𝐚0𝑡

2 +
1

2 ⋅ 3
𝐀3𝐚0𝑡

3 +⋯ 

𝐱(𝑡) = (𝐈 +𝐀𝑡 +
1

2
𝐀2𝑡2 +

1

2 ⋅ 3
𝐀3𝑡3 +⋯)𝐚0 

En 𝑡 = 0 se tiene: 

𝐱(0) = 𝐚0 

https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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Por lo tanto: 

𝐱(𝑡) = (𝐈 +𝐀𝑡 +
1

2
𝐀2𝑡2 +

1

2 ⋅ 3
𝐀3𝑡3 +⋯)𝐱(0) 

La solución de la ecuación de estado homogénea es, según las ecuaciones 

(1.83) y (1.89): 

𝐱(𝑡) = 𝚽(𝑡)𝐱(0) 

Comparando se llega a la siguiente expresión: 

 𝚽(𝑡) = 𝐈 +𝐀𝑡 +
1

2!
𝐀2𝑡2 +

1

3!
𝐀3𝑡3 +⋯ =∑

𝐀𝑖𝑡𝑖

𝑖!

∞

𝑖=0

 (1.91) 

En el caso escalar, la serie anterior corresponde a una función exponencial, 

pero no tiene sentido para el caso matricial (un escalar elevado a una matriz 

no tiene significado matemático). Sin embargo, y por analogía, a la serie 

anterior se le denomina la matriz exponencial (o exponencial de una matriz o 

exponencial matricial) y se le representa como 𝑒𝐀𝑡, aunque solo debe 

entenderse como una representación de la serie de potencia 

(coincidencialmente, y para fines mnemotécnicos, la mayoría de las 

propiedades se pueden obtener si se considera que 𝑒𝐀𝑡 es una función 

exponencial): 

𝑒𝐀𝑡 ≡ 𝐈 +𝐀𝑡 +
1

2!
𝐀2𝑡2 +

1

3!
𝐀3𝑡3 +⋯ 

Las propiedades de la matriz de transición del estado se muestran en la 

TABLA 1.6 y se obtienen a partir de su representación en serie de potencias 

y la operación con series. 

La primera expresión se obtiene directamente haciendo 𝑡 = 0 en la serie. 

La quinta propiedad se obtiene derivando la serie, sacando 𝐀 como factor 

común e identificando que lo que queda corresponde de nuevo a 𝚽. Si la sexta 

propiedad es correcta, entonces haciendo 𝜏 = −𝑡 se obtiene la segunda 

propiedad; aplicándola 𝑚 veces con 𝜏 = 𝑡 se obtiene la cuarta propiedad; 

haciendo 𝑡 = 𝑡2 − 𝑡1 y 𝜏 = 𝑡1 − 𝑡0 se obtiene la tercera propiedad. La séptima 

propiedad se demuestra de manera semejante a la sexta propiedad. Por lo 

tanto, demostrando la sexta propiedad se deducen las otras tres (y una cuarta). 

La sexta propiedad se obtiene operando con las series: 
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𝚽(𝑡)𝚽(𝜏) =∑
𝐀𝑖𝑡𝑖

𝑖!

∞

𝑖=0

∑
𝐀𝑗𝜏 𝑗

𝑗!

∞

𝑗=0

 

TABLA 1.6 PROPIEDADES DE LA MATRIZ DE TRANSICIÓN DEL ESTADO 

(1) 𝚽(0) = 𝐈𝑒0 = 𝐈 

(2) 𝚽−1(𝑡) = 𝚽(−𝑡)                           (𝑒𝐀𝑡)−1 = 𝑒−𝐀𝑡 

(3) 𝚽(𝑡2 − 𝑡1)𝚽(𝑡1 − 𝑡𝑜) = 𝚽(𝑡2 − 𝑡𝑜)     𝑒
𝐀(𝑡2−𝑡1)𝑒𝐀(𝑡1−𝑡0)

= 𝑒𝐀(𝑡2−𝑡0) 

(4) [𝚽(𝑡)]𝑚 = 𝚽(𝑚𝑡)                          (𝑒𝐀𝑡)𝑚 = 𝑒𝐀𝑚𝑡 

(5)
 𝑑𝚽(𝑡)

𝑑𝑡
= 𝐀𝚽(𝑡)                            

𝑑𝑒𝐀𝑡

𝑑𝑡
= 𝐀𝑒𝐀𝑡 

(6) 𝚽(𝑡 + 𝜏) = 𝚽(𝑡)𝚽(𝜏)                     𝑒𝐀(𝑡+𝜏) = 𝑒𝐀𝑡𝑒𝐀𝜏  

(7) 𝑒𝐀1𝑡𝑒𝐀2𝑡 = 𝑒(𝐀1+𝐀2)𝑡  sii  𝐀1𝐀2 = 𝐀2𝐀1 

El producto de Cauchy de dos series infinitas es (se puede demostrar por 

inducción matemática): 

(∑𝑎𝑖

∞

𝑖=0

)(∑𝑏𝑗

∞

𝑗=0

) =∑∑𝑎𝑙𝑏𝑘−𝑙

𝑘

𝑙=0

∞

𝑘=0

 

Teniendo en cuenta el producto de Cauchy de dos series convergentes y 

multiplicando y dividiendo por 𝑘!: 

𝚽(𝑡)𝚽(𝜏) =∑∑
𝐀𝑙𝑡𝑙

𝑙!

𝐀𝑘−𝑙𝜏𝑘−𝑙

(𝑘 − 𝑙)!

𝑘

𝑙=0

∞

𝑘=0

=∑
𝐀𝑘

𝑘!
∑
𝑘! 𝑡𝑙𝜏𝑘−𝑙

𝑙! (𝑘 − 𝑙)!

𝑘

𝑙=0

∞

𝑘=0

 

Fórmula del binomio de Newton: 

(𝑡 + 𝜏)𝑛 =∑
𝑘! 𝑡𝑙𝜏𝑘−𝑙

𝑙! (𝑘 − 𝑙)!

𝑘

𝑙=0

 

Por lo tanto: 

𝚽(𝑡)𝚽(𝜏) =∑
𝐀𝑘(𝑡 + 𝜏)𝑘

𝑘!
= 𝚽(𝑡 + 𝜏)

∞

𝑘=0
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Si 𝐀 es una matriz diagonal, entonces: 

 𝐀 =

[

  
 
𝑎1 0 ⋯ 0

0 𝑎2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑎𝑛]

  
 
, 𝑒𝐀𝑡 =

[

  
 
𝑒𝑎1𝑡 0 ⋯ 0
0 𝑒𝑎2𝑡 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑒𝑎𝑛𝑡]

  
 

 (1.92) 

1.8.6 Discretización de la ecuación de estado de tiempo continuo 

Al igual que la discretización de una ecuación diferencial lineal con 

coeficientes constantes y una función de transferencia (secciones 1.5 y 1.7.2, 

respectivamente), se muestra a continuación el proceso de discretización de 

una ecuación de estado, inicialmente sin retardo (la ecuación de salida es una 

ecuación algebraica y solo se requiere tomar sus valores en los instantes de 

muestreo). Como en los dos casos anteriores, aquí también se asume el uso de 

un retenedor de orden cero y la correcta selección del período de muestreo. 

Se parte de la ecuación (1.90): 

𝐱(𝑡) = 𝚽(𝑡 − 𝑡0)𝐱(𝑡0) + ∫𝚽(𝑡 − 𝜏)𝐁𝐮(𝜏)𝑑𝜏

𝑡

𝑡0

 

Tomando 𝑡0 = 𝑘𝑇𝑠 y 𝑡 = (𝑘 + 1)𝑇𝑠, con un retenedor de orden cero, lo cual 

garantiza que la entrada permanece constante entre dos instantes de 

muestreo, se obtiene: 

𝐱((𝑘 + 1)𝑇𝑠) = 𝚽(𝑇𝑠)𝐱(𝑘𝑇𝑠) + ∫ 𝚽((𝑘 + 1)𝑇𝑠 − 𝜏)

(𝑘+1)𝑇𝑠

𝑘𝑇𝑠

𝐁𝐮(𝜏)𝑑𝜏  

Entre instantes de muestreo 𝐮(𝜏) permanece constante e igual a 𝐮(𝑘𝑇𝑠): 

𝐱((𝑘 + 1)𝑇𝑠) = 𝚽(𝑇𝑠)𝐱(𝑘𝑇𝑠) + ∫ 𝚽((𝑘 + 1)𝑇𝑠 − 𝜏)

(𝑘+1)𝑇𝑠

𝑘𝑇𝑠

𝑑𝜏𝐁𝐮(𝑘𝑇𝑠) 

La integral se puede simplificar con un cambio de variables 𝜃 = (𝑘 +

1)𝑇𝑠 − 𝜏 : 
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∫ 𝚽((𝑘 + 1)𝑇𝑠 − 𝜏)

(𝑘+1)𝑇𝑠

𝑘𝑇

𝑑𝜏 = ∫ 𝚽(𝑡)

𝑇𝑠

0

𝑑𝑡 

La ecuación de estado discreta y la ecuación de salida son: 

{
𝐱((𝑘 + 1)𝑇𝑠) = 𝚽𝐱(𝑘𝑇𝑠) + 𝚪𝐮(𝑘𝑇𝑠)

𝐲(𝑘𝑇𝑠) = 𝐂𝐱(𝑘𝑇𝑠) + 𝐃𝐮(𝑘𝑇𝑠)       
 

Omitiendo el período de muestreo: 

 

{
𝐱(𝑘 + 1) = 𝚽𝐱(𝑘) + 𝚪𝐮(𝑘)

𝐲(𝑘) = 𝐂𝐱(𝑘) +𝐃𝐮(𝑘)
 

𝚽 = 𝑒𝐀𝑇𝑠 , 𝚪 = ∫ 𝚽(𝑡)

𝑇𝑠

0

𝑑𝑡𝐁 

(1.93) 

Ahora se discretiza el modelo con retardo (1.67), donde se asume que todas 

las entradas tienen el mismo retardo: 

{
𝐱̇(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐮(𝑡 − 𝜏)

𝐲(𝑡) = 𝐂𝐱(𝑡) + 𝐃𝐮(𝑡 − 𝜏)
 

Cuando el retardo es un múltiplo del período de muestreo (𝜏 = 𝑑 ⋅ 𝑇𝑠) el 

modelo discreto tiene la siguiente forma, lo cual equivale a tener 𝑧−𝑑 en la 

función de transferencia, tal y como se explica en la sección 1.7.2 y expresión 

(1.52): 

 𝐱(𝑘 + 1) = 𝚽𝐱(𝑘) + 𝚪𝐮(𝑘 − 𝑑) (1.94) 

Para el caso cuando el retardo no es un múltiplo del período de muestreo 

(𝜏 = 𝑑 ⋅ 𝑇𝑠 + 𝜏′), el problema se puede dividir en dos partes: el retardo entero 

𝑑 más un retardo 𝜏′ menor que el período de muestreo. A continuación, se 

discretiza el modelo con un retardo 𝜏 = 𝜏′ < 𝑇𝑠 (𝑑 = 0). Se parte de la 

solución continua con una entrada con retardo: 
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𝐱((𝑘 + 1)𝑇𝑠) = 𝚽(𝑇𝑠)𝐱(𝑘𝑇𝑠) + ∫ 𝚽((𝑘 + 1)𝑇𝑠 − 𝑡)

(𝑘+1)𝑇𝑠

𝑘𝑇𝑠

𝐁𝐮(𝑡 − 𝜏)𝑑𝑡 

Debido a que el retardo hace que la entrada quede entre dos instantes de 

muestreo, es necesario dividir la integral en dos partes: 

∫ 𝚽((𝑘 + 1)𝑇𝑠 − 𝑡)

(𝑘+1)𝑇𝑠

𝑘𝑇𝑠

𝐁𝐮(𝑡 − 𝜏)𝑑𝑡 =

= ∫ 𝚽((𝑘 + 1)𝑇𝑠 − 𝑡)

𝑘𝑇𝑠+𝜏

𝑘𝑇𝑠

𝑑𝑡𝐁𝐮((𝑘 − 1)𝑇𝑠) + ∫ 𝚽((𝑘 + 1)𝑇𝑠 − 𝑡)

(𝑘+1)𝑇𝑠

𝑘𝑇𝑠+𝜏

𝑑𝑡𝐁𝐮(𝑘𝑇𝑠)

 

De esta manera, el sistema discreto con retardo menor que el período de 

muestreo es, omitiendo 𝑇𝑠 en la ecuación de estado: 

 𝐱(𝑘 + 1) = 𝚽𝐱(𝑘) + 𝚪0𝐮(𝑘) + 𝚪1𝐮(𝑘 − 1) (1.95) 

Donde, 

𝚽 = 𝚽(𝑇𝑠), 𝚪0 = ∫ 𝚽(𝑡)

𝑇𝑠−𝜏

0

𝑑𝑡𝐁, 𝚪1 = 𝚽(𝑇𝑠 − 𝜏)∫𝚽(𝑡)

𝜏

0

𝑑𝑡𝐁 

Este modelo en la forma matricial tiene la siguiente forma: 

 [
𝐱(𝑘 + 1)

𝐮(𝑘)
] = [

𝚽 𝚪1
0 0

] [
𝐱(𝑘)

𝐮(𝑘 − 1)
] + [

𝚪0
𝐈
]𝐮(𝑘) (1.96) 

El modelo discreto con retardo aumenta su orden en 𝑚 (número de 

entradas con retardo) con respecto al modelo continuo, tal y como sucede con 

la función de transferencia, donde un retardo no polinomial 𝑒−𝜏′𝑠 incrementa 

el orden en 𝑧−1 (lo cual equivale a tener un polo en el origen). Es importante 

resaltar que la ecuación de estado anterior tiene 𝑚 polos en el origen, pero 

ese retardo no se puede expresar en un solo término de la forma 𝐮(𝑘 − 1), 

sino que requiere de otro término 𝐮(𝑘), como se muestra en la ecuación 

(1.96). Sin embargo, la función de transferencia respectiva sí muestra el 

retardo de 1 (ver el ejemplo siguiente). La única forma de que no se 
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incremente el orden de la ecuación de estado discreta es que el retardo sea 

exactamente un múltiplo del período de muestreo, como en (1.94).  

Para el caso general cuando 𝜏 = 𝑑 ⋅ 𝑇𝑠 + 𝜏′, se tiene una combinación de 

los dos casos anteriores al cambiar 𝑘 → 𝑘 − 𝑑 en las entradas (forma que 

entrega MATLAB): 

 [
𝐱(𝑘 + 1)

𝐮(𝑘 − 𝑑)
] = [

𝚽 𝚪1
0 0

] [
𝐱(𝑘)

𝐮(𝑘 − (𝑑 + 1))
] + [

𝚪0
𝐈
]𝐮(𝑘 − 𝑑) (1.97) 

Donde, 

𝑑 = ⌊
𝜏

𝑇𝑠
⌋ 

La discretización también es posible con diferentes retardos en cada 

entrada, pero la deducción es un poco más extensa y se omite aquí (la función 

c2d de MATLAB considera todos estos casos). La expresión anterior puede 

llevarse a la forma (1.98) sin el retardo 𝑑, pero donde se incrementa el orden 

en (𝑑 + 1) ×𝑚, es decir, 𝑑 ×𝑚 variables más con respecto a dicho modelo. 

En [18] se encuentra la función c2d_expand de MATLAB para el cálculo de 

dicho modelo. 

 

[

 
 
 
 
𝐱(𝑘 + 1)

𝐮(𝑘 − 𝑑)
⋮

𝐮(𝑘 − 1)

𝐮(𝑘) ]

 
 
 
 

=

[

 
 
 
 
𝚽 𝚪1 𝚪0 ⋯ 0

0 0 𝐈 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐈
0 0 0 ⋯ 0]

 
 
 
 

[

 
 
 
 

𝐱(𝑘)

𝐮(𝑘 − (𝑑 + 1))
⋮

𝐮(𝑘 − 2)

𝐮(𝑘 − 1) ]

 
 
 
 

+

[

 
 
 
 
0
0
⋮
0
𝐈]

 
 
 
 

𝐮(𝑘) (1.98) 

Normalmente, las ecuaciones de estado de tiempo discreto se resuelven de 

manera iterativa, como en el caso de las ecuaciones en diferencias, pero 

también se pueden resolver de manera analítica por métodos similares a los 

presentados en la sección 1.8.3. Adicionalmente, se puede resolver por 

sustituciones progresivas, tal y como se muestra a continuación. Sea 

𝐱(𝑘 + 1) = 𝚽𝐱(𝑘) + 𝚪𝐮(𝑘) 

Haciendo 𝑘 = 𝑘 + 1 en la ecuación anterior: 

𝐱(𝑘 + 2) = 𝚽𝐱(𝑘 + 1) + 𝚪𝐮(𝑘 + 1) = 𝚽[𝚽𝐱(𝑘) + Γ𝐮(𝑘)] + 𝚪𝐮(𝑘 + 1)

= 𝚽2𝑥(𝑘) + 𝚽𝚪𝐮(𝑘) + 𝚪𝐮(𝑘 + 1) 
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Haciendo 𝑘 = 𝑘 + 1 en la ecuación anterior: 

𝐱(𝑘 + 3) = 𝚽𝐱(𝑘 + 2) + 𝚪𝐮(𝑘 + 2)

= 𝚽[𝚽2𝐱(𝑘) + 𝚽𝚪𝐮(𝑘) + 𝚪𝐮(𝑘 + 1)] + 𝚪𝐮(𝑘 + 2)

= 𝚽3𝐱(𝑘) + 𝚽2𝚪𝐮(𝑘) + 𝚽𝚪𝐮(𝑘 + 1) + 𝚪𝐮(𝑘 + 2)

 

Y así, de manera sucesiva, se llega al siguiente término general: 

𝐱(𝑘 + 𝑛) = 𝚽𝑛𝐱(𝑘) + 𝚽𝑛−1𝚪𝐮(𝑘) + ⋯+ 𝚪𝐮(𝑘 + (𝑛 − 1)) 

Haciendo 𝑘 = 0, y cambiando 𝑛 por 𝑘 al final, en la ecuación anterior se 

obtiene: 

 𝐱(𝑘) = 𝚽𝑘𝐱(0) +∑𝚽𝑘−𝑗−1𝚪𝐮(𝑗)
𝑘−1

𝑗=0

 (1.99) 

La expresión anterior es semejante a la solución (1.89) de la ecuación de 

estado de tiempo continuo. Se invita al lector a llegar a la misma solución 

aplicando la transformada z. Dicha solución será útil para el estudio de otros 

temas, como el de la sección 4.10 sobre controlabilidad y observabilidad.  

Ver los ejercicios resueltos [4] 1.21 y 1.22, y los ejercicios propuestos [5] 

1.21 y 1.22 en la web del libro. 

1.8.7 Transformaciones lineales y formas canónicas 

Una ecuación de estado lineal no es única para un sistema, dado que se puede 

hacer un cambio de variables utilizando una matriz de transformación (la 

transformación más simple consiste en cambiar el orden de las variables de 

estado y renombrarlas). Una transformación lineal (o transformación de 

similitud) es una matriz cuadrada invertible 𝐓 que permite la transformación 

de una representación en el espacio de estado en una representación 

equivalente (similar), la cual conserva las propiedades básicas del modelo, 

tales como la ecuación característica, los valores y vectores propios (sección 

1.8.3), la matriz de transición del estado, la controlabilidad y la observabilidad. 

El requisito de invertibilidad de una matriz cuadrada es equivalente a que sea 

de rango completo (rango igual al número de filas o columnas). Sin embargo, 

una matriz puede ser de rango completo y tener filas o columnas muy 

similares, lo cual significa que está mal condicionada.  

https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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El número de condición cond(𝐌) de una matriz es un valor que indica qué 

tan cerca está una matriz de tener filas o columnas linealmente dependientes. 

Un valor cercano a 1 indica que la matriz está bien condicionada, pero entre 

más grande sea ese número más mal condicionada está y más sensibles son los 

resultados, que impliquen su inversa, a pequeños cambios de la matriz 

original. Por lo tanto, en los problemas que requieren del cálculo del rango se 

debe realizar también un cálculo del número de condición. Cálculo con 

MATLAB: 

cond_number = cond(A, p)   % p es el tipo de norma (por defecto p = 2) 

Algunas transformaciones lineales permiten convertir el modelo a una 

estructura llamada forma canónica que puede tener ventajas en cierto tipo de 

problemas. Sea la siguiente ecuación de estado a transformar: 

 {
𝐱̇ = 𝐀𝐱 +𝐁𝐮
𝐲 = 𝐂𝐱 +𝐃𝐮

 (1.100) 

Se puede realizar la transformación de las variables de estado de la 

siguiente manera (en muchos textos se utiliza 𝐱 = 𝐓𝐱∗): 

 𝐱∗(𝑡) = 𝐓𝐱(𝑡),   𝐱(𝑡) = 𝐓−1𝐱∗(𝑡)              (1.101) 

Reemplazando (1.100) en (1.101) se obtiene: 

 {
𝐱̇∗ = 𝐀∗𝐱∗ +𝐁∗𝐮
𝐲 = 𝐂∗𝐱∗ +𝐃∗𝐮 

    

𝐀∗ = 𝐓𝐀𝐓−1,   𝐁∗ = 𝐓𝐁,  𝐂∗ = 𝐂𝐓−1, 𝐃∗ = 𝐃             

(1.102) 

Los modelos (1.100) y (1.102) son diferentes en forma, pero tienen los 

mismos vectores de entrada y salida (sin asteriscos). Se puede ver, por 

ejemplo, que la ecuación característica y los valores propios (sección 1.8.3) no 

cambian con la transformación (sin embargo, dos matrices que tengan la 

misma ecuación característica no son necesariamente similares, dado que se 

pueden diferenciar en las matrices 𝐁,𝐂 o 𝐃): 

|𝜆𝐈 − 𝐀∗| = |𝜆𝐈 − 𝐓𝐀𝐓−1| = |𝜆𝐓𝐓−1 −𝐓𝐀𝐓−1| = |𝐓(𝜆𝐈 −𝐀)𝐓−1|

= |𝐓||𝜆𝐈 −𝐀||𝐓−1| = |𝜆𝐈 −𝐀| 
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Aunque la matriz 𝐓 se puede seleccionar de manera arbitraria (con la única 

condición de ser invertible), lo más útil es definir dicha matriz de manera que 

se obtengan formas especiales de la ecuación de estado, algunas de las cuales 

se explican a continuación. 

La forma canónica diagonal (FCD) es aplicable cuando los valores propios 

(sección 1.8.3) de la matriz 𝐀 son reales y tienen una multiplicidad 

geométrica igual a la multiplicidad algebraica (sección 1.8.3), es decir, cuando 

todos los vectores propios son linealmente independientes. Esta forma es 

interesante pues permite desacoplar los diferentes estados del sistema y tratar 

cada uno por separado como una ecuación separada. La respectiva 

transformación tiene la siguiente forma, donde 𝐯𝑖 es un vector propio: 

 𝐓 = [𝐯1 𝐯2 ⋯ 𝐯𝐧]−1 (1.103) 

 𝐀∗ = 𝐓𝐀𝐓−1 =

[

 
 
 
 
𝜆1 0 0 ⋯ 0

0 𝜆2 0 ⋯ 0

0 0 𝜆3 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝜆𝑛]

 
 
 
 

 (1.104) 

En la nueva representación la matriz 𝐀∗ tiene la forma dada en la ecuación 

anterior. 

Por ejemplo, el siguiente sistema se puede llevar a la forma diagonal: 

𝐱̇ = [
3 −10 −4
2 −6 −2
2 −4 −3

]𝐱 

Los valores y vectores propios son: 

𝜆 = {−1,−2,−3},     𝐯1 = [
1
0
1

] , 𝐯2 = [
2
1
0

] , 𝐯3 = [
4
2
1

] 

La matriz de transformación es: 

𝐓 = [𝐯1 𝐯2 𝐯3]−1 = [
1 2 4
0 1 2
1 0 1

]

−1

= [
1 −2 0
2 −3 −2
−1 2 1

] 



1. Fundamentos matemáticos de los sistemas dinámicos 

94 

La matriz 𝐀∗ en la forma canónica diagonal toma la siguiente forma: 

𝐀∗ = 𝐓𝐀𝐓−1 = [
−1 0 0
0 −2 0
0 0 −3

] 

Si la multiplicidad geométrica de una raíz múltiple es igual a su 

multiplicidad algebraica, entonces el modelo también se puede diagonalizar, 

tal y como se muestra en el siguiente ejemplo, donde mg = 𝑛 − rank(𝜆𝐈 −

𝐀) = 2 = ma. 

𝐱̇ = [
3 −8 −4
2 −5 −2
1 −2 −2

]𝐱 

Los valores y vectores propios son: 

  𝜆 = {−1,−1,−2},     𝐯1 = [
2
1
0

] , 𝐯2 = [
1
0
1

] , 𝐯3 = [
4
2
1

] 

La matriz de transformación es: 

𝐓 = [𝐯1 𝐯2 𝐯3]−1 = [
2 1 4
1 0 2
0 1 1

]

−1

= [
2 −3 −3
1 −2 0
−1 2 1

] 

La matriz 𝐀∗ en la forma canónica diagonal toma la siguiente forma: 

𝐀∗ = 𝐓𝐀𝐓−1=[
−1 0 0
0 −1 0
0 0 −2

] 

Cuando se tienen raíces múltiples con multiplicidad geométrica diferente 

de la multiplicidad algebraica, o se tienen raíces complejas, se obtiene la 

llamada forma canónica de Jordan (FCJ), una forma cuasidiagonal con bloques 

sobre la diagonal (los bloques de Jordan). La forma canónica diagonal es un 

caso especial de la forma canónica de Jordan. Por ejemplo, para una raíz 𝜆1 
real de multiplicidad 3 (se adiciona un 1 a la derecha de las primeras raíces), 

dos raíces complejas (𝛼 ± 𝑖𝛽, parte real en la diagonal principal y parte 

imaginaria sobre la otra diagonal) y raíces reales sin repetir, se tiene, con la 

misma matriz de transformación (1.103), la siguiente forma: 
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 𝐀∗ = 𝐓𝐀𝐓−1 =

[

 
 
 
 
 
 
 
 
 
𝜆1 1 0 0 0 0 0 ⋯ 0

0 𝜆1 1 0 0 0 0 ⋯ 0

0 0 𝜆1 0 0 0 0 ⋯ 0

0 0 0 𝛼 𝛽 0 0 ⋯ 0
0 0 0 −𝛽 𝛼 0 0 ⋯ 0
0 0 0 0 0 𝜆2 0 ⋯ 0

0 0 0 0 0 0 𝜆3 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0 0 0 ⋯ 𝜆4]

 
 
 
 
 
 
 
 
 

 (1.105) 

En el bloque de Jordan para raíces reales múltiples, si algunos vectores 

propios son linealmente independientes, entonces algunos unos sobre la 

diagonal desaparecen. En términos de la función de transferencia, si se tienen 

raíces reales sin repetir, entonces se obtiene una función de transferencia que 

se puede desarrollar en fracciones parciales simples; si hay raíces múltiples no 

se obtienen fracciones simples, sino una fracción del tipo 1/(𝑠 + 𝜆)𝑘, la cual 

se puede representar como el producto de fracciones que al llevarlas a una 

ecuación de estado genera un bloque de Jordan con los unos sobre la diagonal 

principal. El siguiente ejemplo ilustra dicha situación, donde el tercero vector 

es un vector propio generalizado, dado que mg = 𝑛 − rank(𝜆𝐈 −𝐀) = 1 <

ma. 

𝐱̇ = [
−6 11 −6
−3 6 −4
−2 5 −4

]𝐱  

Los valores y vectores propios son: 

𝜆 = {−2,−1,−1},   𝐯1 = [
4
2
1

] , 𝐯2 = [
1
1
1

] , 𝐯3 = [
3
2
1

] 

La matriz de transformación es: 

𝐓 = [𝐯1 𝐯2 𝐯3]−1 = [
4 1 3
2 1 2
1 1 1

]

−1

= [
1 −2 1
0 −1 2
−1 3 −2

] 

La matriz 𝐀∗ en la forma canónica de Jordan toma la siguiente forma: 
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𝐀∗ = 𝐓𝐀𝐓−1 = [
−2 0 0
0 −1 1
0 0 −1

] 

En el caso de raíces complejas, para llegar al bloque de Jordan de la 

ecuación anterior es necesario tomar como vectores propios la parte real y la 

parte imaginaria del vector propio complejo, dado que de lo contrario se 

obtendrá una forma canónica de Jordan con valores complejos sobre la 

diagonal. Por ejemplo (el segundo vector propio es la conjugada del primero): 

𝐱̇ = [
2 10
−1 −4

]𝐱 

Los valores y vectores propios son: 

  𝜆 = {−1 + 𝑖,−1 − 𝑖},    𝐯1 = [
−3 − 𝑖
1
] , 𝐯2 = [

−3 + 𝑖
1
] 

La matriz de transformación con valores complejos es: 

𝐓 = [𝐯1 𝐯2]−1 = [
−3 − 𝑖 −3 + 𝑖
1 1

]
−1

= [
0.5𝑖 0.5 + 1.5𝑖
−0.5𝑖 0.5 − 1.5𝑖

] 

La matriz 𝐀∗ en la forma canónica diagonal con valores complejos toma la 

siguiente forma: 

𝐀∗ = 𝐓𝐀𝐓−1 = [
−1 + 𝑖 0
0 −1 − 𝑖

] 

Si se toma la parte real y la parte imaginaria del vector propio (con cualquier 

signo) se obtiene: 

𝐓 = [Re{𝐯1} Im{𝐯2}]
−1 = [

−3 1
1 0

]
−1

= [
0 1
1 3
]      

 𝐀∗ = 𝐓𝐀𝐓−1 = [
−1 −1
1 −1

] 

En la sección 4.10.5 se presentan otras dos formas canónicas, con otro tipo 

de aplicaciones: forma canónica controlable y forma canónica observable. El 

diseño a partir de cualquiera de las formas canónicas implica la 

implementación o simulación con el sistema original y la aplicación de la 
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ecuación (1.101) cuando se realimente el estado, tal y como se muestra en la 

Fig. 4.17.  

Ver los ejercicios resueltos [4] 1.23 y 1.24, y los ejercicios propuestos [5] 

1.24 en la web del libro. 

 

Fig. 1.24 Implementación de un controlador con una forma canónica 

1.8.8 Polos y ceros de sistemas MIMO a partir de la ecuación de estado 

En la sección 1.4.2 se presenta el concepto de polos y ceros para sistemas 

representados por una matriz de funciones de transferencia y se muestra las 

dificultades en el caso MIMO, sin profundizar en los detalles matemáticos. 

Allí se explicó que cuando se tiene una matriz de funciones de transferencia 

los polos y ceros no son generalmente aquellos de cada una de las funciones 

de transferencia y es necesario realizar algunos cálculos adicionales. En esta 

sección se amplían dichos conceptos para sistemas multivariables (MIMO), 

con base en lo expuesto en [14] [19], incluyendo una interpretación de estos, 

pero realizando los cálculos con MATLAB (en la referencia se encuentra la 

solución analítica a los ejemplos propuestos). Se muestra ahora el cálculo de 

los polos y ceros a partir del modelo en el espacio de estado. Como ya se ha 

expresado, los polos determinan la estabilidad del sistema lineal y 

corresponden a los valores propios (sección 1.8.3) de la matriz 𝐀. Ahora la 

atención se centra en el cálculo de los ceros de un sistema MIMO. El cálculo 

de dichos valores de bloqueo para una representación en el espacio de estado 

parte de la siguiente realización mínima y su transformada de Laplace (con 

condiciones iniciales iguales a cero): 

{
𝐱̇ = 𝐀𝐱 +𝐁𝐮
𝐲 = 𝐂𝐱 +𝐃𝐮

          {
(𝑠𝐈 −𝐀)𝐗(𝑠) − 𝐁𝐔(𝑠) = 0

𝐂𝐗(𝑠) + 𝐃𝐔(𝑠) = 𝐘(𝑠)   
 

https://siscontexto.blogspot.com/2023/08/ejercicios-resueltos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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En forma matricial: 

[
(𝑠𝐈 − 𝐀) −𝐁

𝐂 𝐃
][
𝐗(𝑠)

𝐔(𝑠)
] = [

0
𝐘(𝑠)

] , 𝐏(s) = [
(𝑠𝐈 − 𝐀) −𝐁

𝐂 𝐃
] 

Entonces, un cero es un valor 𝑠 = 𝑧𝑖 en el cual la matriz 𝐏(𝑠) disminuye 

su rango, por lo cual para alguna entrada no nula de la forma 𝐩𝑧𝑒
𝑧𝑖𝑡𝑢𝑠(𝑡) y 

ciertas condiciones iniciales la salida no contendrá el término 𝑒𝑧𝑖𝑡, donde 𝐩𝑧 
es cierto vector. Los ceros se calculan resolviendo el siguiente problema de 

valores propios generalizados: 

 

[
(𝑠𝐈 − 𝐀) −𝐁

𝐂 𝐃
][
𝐗(𝑠)

𝐔(𝑠)
] = 0  

(𝑠 [
𝐈 0
0 0
] − [

𝐀 𝐁
𝐂 𝐃

]) [
𝐗(𝑠)

𝐔(𝑠)
] = 0 

(1.106) 

Se observa que mientras los polos dependen de la matriz 𝐀, los ceros 

dependen de las matrices [𝐀,𝐁,𝐂,𝐃]. Los ceros de transmisión 

corresponden a una realización mínima (después de la cancelación de polos y 

ceros, si la hay). Los ceros invariantes son los ceros de una realización no 

mínima. Si no hay cancelación de polos y ceros (el sistema es controlable y 

observable), los ceros invariantes y de transmisión son equivalentes. Los polos 

y ceros en sistemas multivariables tienen además una dirección dada por los 

respectivos vectores propios de (1.106). Un modelo no tiene ceros si 𝐂 =
𝐈,𝐃 = 0, es decir, cuando las salidas contienen información directa de los 

estados. Este hecho es importante en el diseño de sistemas de control por 

realimentación del estado (sección 4.9), donde no hay preocupación por la 

ubicación de los ceros. Los ceros pueden aparecer cuando el número de entradas o 

salidas es diferente del número de estados o cuando 𝐃 ≠ 0. Sea la siguiente matriz 

de funciones de transferencia: 

𝐆3 =
1

(𝑠 + 1)(𝑠 + 2)(𝑠 − 1)
[
(𝑠 − 1)(𝑠 + 2) 0 (𝑠 − 1)2

−(𝑠 + 1)(𝑠 + 2) (𝑠 − 1)(𝑠 + 1) (𝑠 − 1)(𝑠 + 1)
] 

Polos = {−1,1,−2,−2}, Ceros invariantes = {−1,1,1} 

La respectiva realización mínima de la ecuación de estado calculada con 

MATLAB es (la función tzero da realmente los ceros invariantes): 
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G = tf ( {[1 1 -2]  0  [1 -2 1]; -[1 3 2]  [1 0 -1]  [1 0 -1] }, [1 2 -1 -2]); S = ss(G); Smin = ss(G, 'min');  
polos1 = pole(S); ceros1 = tzero(S); polos2 = pole(Smin); ceros2 = tzero(Smin); 

                                      

Los polos de la realización mínima son {−2,−2,−1,1} y el cero de 

transmisión es {1}, mientras que los polos y ceros invariantes son 

{−2,−2,−1,−1,1,1} y {−1,1,1}, con lo cual se observa una cancelación de 

dos polos y dos ceros. Aunque no se calculan los vectores de dirección, deben 

ser los adecuados dada la cancelación. 

1.9 Relación entre representaciones de sistemas dinámicos 

Cada una de las tres representaciones vistas anteriormente tiene sus ventajas 

y por eso es importante conocer las relaciones entre ellas, las cuales se 

muestran en la Fig. 1.25 y se explican a continuación. 

 

Fig. 1.25 Relación entre los métodos de modelación matemática (algunos aplican solo a 

modelos lineales) 

Relaciones: 

(1) Transformación de una ecuación diferencial o en diferencias al espacio de 

estado. En este caso se utiliza el método de las variables de fase expuesto 

en la sección 1.8.2. El método es aplicable tanto a sistemas lineales como 

no lineales. 
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(2) Transformación del espacio de estado a una ecuación diferencial. Este caso 

es de poco interés, pero el método general consiste en derivar las 

ecuaciones de estado y reemplazarlas unas en otras hasta obtener una sola 

ecuación diferencial del mismo orden de la ecuación de estado. El método 

más simple para sistemas lineales consiste en pasar de la ecuación de 

estado a la función de transferencia y de allí a la ecuación diferencial. El 

caso no lineal es más complejo. 

(3) Transformación de una ecuación diferencial o en diferencias a una función 

de transferencia. En este caso se aplica la transformada de Laplace o z y 

se asumen condiciones iniciales iguales a cero (lo cual se logra si se trabaja 

alrededor de un punto de equilibrio, tal y como se explica en la sección 

3.4). El método se explica en la sección 1.4.1. 

(4) Transformación de una función de transferencia a una ecuación diferencial 

o en diferencias. Aquí se aplica la transformada inversa de Laplace o z para 

llegar a una ecuación diferencial o en diferencias con condiciones iniciales 

iguales a cero, lo que equivale a un punto de equilibrio (solo 𝑦(0) puede 

ser diferente de cero). El método se explica en la sección 1.4.1. Por 

ejemplo: 

𝐺(𝑠) =
𝑌 (𝑠)

𝑈(𝑠)
=

𝑐

𝑠2 + 𝑎𝑠 + 𝑏
, (𝑠2 + 𝑎𝑠 + 𝑏)𝑌 (𝑠) = 𝑐𝑈(𝑠) 

𝑦̈ + 𝑎𝑦̇ + 𝑏𝑦 = 𝑐𝑢(𝑡), 𝑦(0) = 0, 𝑦(̇0) = 0 

(5) Transformación del espacio de estado a una matriz de funciones de 

transferencia. En este caso se obtiene una fórmula explícita aplicando la 

transformada de la ecuación de estado, con un cambio de variables que 

garantice condiciones iniciales iguales a cero, y se despeja la transformada 

de la salida: 

{
𝐱̇ = 𝐀𝐱 +𝐁𝐮
𝐲 = 𝐂𝐱 +𝐃𝐮

         {
𝑠𝐗(𝑠) − 𝐱(0) = 𝐀𝐗(𝑠) + 𝐁𝐔(𝑠)

𝐘(𝑠) = 𝐂𝐗(𝑠) +𝐃𝐔(𝑠)           
 

Despejando 𝐗(𝑠) y reemplazando en 𝐘(𝑠): 

𝐘(𝑠) = 𝐂(𝑠𝐈 −𝐀)−1𝐁𝐔(𝑠) +𝐃𝐔(𝑠) = [𝐂(𝑠𝐈 −𝐀)−1𝐁+𝐃]𝐔(𝑠) 

De esta manera, la matriz de funciones de transferencia a partir de la 

ecuación de estado es: 
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 𝐆(𝑠) = 𝐂(𝑠𝐈 −𝐀)−1𝐁+𝐃 (1.107) 

Para el caso discreto: 

 

 𝐆(𝑧) = 𝐂(𝑧𝐈 − 𝚽)−1𝚪+𝐃 (1.108) 

Ejemplo para un sistema MISO (Multiple Input Single Output):  

𝐱̇(𝑡) = [
−5 −1
3 −1

]𝐱(𝑡) + [
2 1
5 3
]𝐮(𝑡), 𝑦 = [1 2]𝐱(𝑡) 

𝐆(𝑠) = 𝐂(𝑠𝐈 −𝐀)−1𝐁+𝐃 = [
12𝑠 + 59

(𝑠 + 2)(𝑠 + 4)

7𝑠 + 34

(𝑠 + 2)(𝑠 + 4)
] 

Cálculo con MATLAB: 

S = ss( [-5 -1; 3 -1], [2 1; 5 3], [1 2], [0 0]); G = tf(S); 

(6) Transformación de una función de transferencia o matriz de funciones de 

transferencia al espacio de estado. A esta transformación se le denomina 

descomposición de la función de transferencia. El siguiente ejemplo 

muestra dicha transformación con MATLAB para un sistema MIMO 

(Multiple Input Multiple Output): 

𝐆(𝑠) = [
12𝑠 + 59

(𝑠 + 2)(𝑠 + 4)

7𝑠 + 34

(𝑠 + 2)(𝑠 + 4)
] 

G = tf({[12 59],[7 34]},[1 6 8]); S = ss(G); 

𝐱 = [
0 −2
4 −6

]𝐱 + [
3.688 2.125
3 1.75

] 𝐮(𝑡), 𝑦 = [0 4]𝐱 

Esta ecuación de estado es similar a la del ejemplo anterior, lo cual se 

puede observar por simulación o por el cálculo de la matriz de 

transformación que relaciona los dos modelos. En el primer caso el código 

es: 

S1 = ss( [-5 -1; 3 -1], [2 1; 5 3], [1 2],0); G = tf({[12 59],[7 34]},[1 6 8]); S2 = ss(G); step(S1,S2)  

Nota: todos los modelos de MATLAB (función de transferencia y 

ecuación de estado) asumen que la unidad de tiempo es el segundo. Sin 
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embargo, si se quieren cambiar las unidades se puede utilizar el comando 

chgTimeUnit o cambiar la propiedad de tiempo con G.TimeUnit. 

Ver los ejercicios propuestos [5] 1.23 en la web del libro.

https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
https://siscontexto.blogspot.com/2023/08/ejercicios-propuestos.html
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