Ecuaciones diferenciales

Orlando García Jaimes Jairo A. Villegas Gutiérrez Jorge Iván Castaño Bedoya José A. Sánchez Cano

Ecuaciones diferenciales / Orlando García Jaimes ... [et al.]. --

Medellín: Fondo Editorial Universidad EAFIT, 2010.

360 p.; 24 cm. -- (Colección académica)

Incluye bibliografía e índice.

ISBN 978-958-720-064-5

- 1. Ecuaciones diferenciales Problemas, ejercicios, etc.
- 2. Curvas Problemas, ejercicios, etc. 3. Ecuaciones lineales Problemas, ejercicios, etc. I. García Jaimes, Orlando II. Tít. III. Serie.

515.35 cd 21 ed.

A1252163

CEP-Banco de la República-Biblioteca Luis Ángel Arango

Ecuaciones diferenciales

Primera edición: mavo de 2010

Tercera reimpresión: febrero de 2014

- © Orlando García Jaimes
- © Jairo A. Villegas Gutiérrez
- © Jorge Iván Castaño Bedoya
- © José A. Sánchez Cano
- © Fondo Editorial Universidad EAFIT

Carrera 48A No. 10 sur - 107. Tel. 261 95 23

www.eafit.edu.co/fondoeditorial

Correo electrónico: fonedit@eafit.edu.co

ISBN: 978-958-720-064-5

Editado en Medellín, Colombia

Contenido

1.	Ecu	acione	s diferenciales de primer orden	11
	1.1.	Conce	ptos básicos	11
		1.1.1.	Ejercicios	20
	1.2.	Separa	ación de variables	22
		1.2.1.	Ecuaciones que se reducen a separables	28
		1.2.2.	Ejercicios	31
	1.3.	Ecuaci	ión lineal de primer orden	34
		1.3.1.	Ecuaciones de Bernoulli y Clairaut	42
		1.3.2.	Ejercicios	45
	1.4.	Ecuaci	iones diferenciales exactas	48
		1.4.1.		53
		1.4.2.	Ejercicios	60
	1.5.	Aplica	ciones	62
		1.5.1.	Desintegración radiactiva	63
		1.5.2.	Crecimiento de poblaciones	67
		1.5.3.	Enfriamiento de cuerpos	73
		1.5.4.	Mezclas	76
		1.5.5.	Trayectorias ortogonales	80
	1.6.	Métod	lo de Euler	84
	1.7.	Ejercio	cios resueltos	87
		1.7.1.	Ejercicios	98
	1.8.	Respu	estas a los ejercicios propuestos	105
		1.8.1.	Ejercicios Sección 1.1.1, página 20	105
		1.8.2.	Ejercicios Sección 1.2.2, página 31	108
		183	Ejercicios Sección 1 3 2 página 45	111

2 Ecuaciones diferenciales

		1.8.4.	Ejercicios Sección 1.4.2, página 60	115
		1.8.5.	Ejercicios Sección 1.7.1, página 98	117
2.	Ecu	aciona	s diferenciales de orden superior	121
۷.	2.1.		ucción	121
	2.2.		preliminar	121
		2.2.1.	Ejercicios	132
	2.3.		ión lineal con coeficientes constantes	133
	2.0.	2.3.1.	Ejercicios	143
	2.4.		ión no homogénea con coeficientes constantes	144
		2.4.1.	9	146
		2.4.2.	1	153
		2.4.3.		170
	2.5.	Ecuaci	ión de Cauchy-Euler	172
		2.5.1.	Ejercicios	176
	2.6.	Vibrac	ciones mecánicas	177
		2.6.1.	Vibraciones libres	179
		2.6.2.	Vibraciones libres amortiguadas	189
		2.6.3.	Vibraciones forzadas	200
		2.6.4.	Ejercicios	207
	2.7.	Circuit	tos eléctricos	212
		2.7.1.	Ejercicios	224
	2.8.	Respu	estas a los ejercicios propuestos	226
		2.8.1.	Ejercicios Sección 2.2.1, página 132	226
		2.8.2.	Ejercicios Sección 2.3.1, página 143	226
		2.8.3.	Ejercicios Sección 2.4.3, página 170	227
		2.8.4.	Ejercicios Sección 2.5.1, página 176	229
		2.8.5.	Ejercicios Sección 2.6.4, página 207	230
		2.8.6.	Ejercicios Sección 2.7.1, página 224	232
3.	Tra	nsform	ada de Laplace	233
	3.1.		ucción	233
	3.2.		ciones y ejemplos	234
		3.2.1.	Ejercicios	248
	3.3.	La fun	ación Gamma	249
			Eiercicios	251

	3.4.	Propiedades de la transformada	252
		3.4.1. Ejercicios	275
	3.5.	Problemas con valores iniciales	279
		3.5.1. Ejercicios	290
	3.6.5	solución de sistemas lineales usando la Transformada	294
		3.6.1. Ejercicios	299
	3.7.	Respuestas a los ejercicios propuestos	302
		3.7.1. Ejercicios Sección 3.2.1, página 248	302
		3.7.2. Ejercicios Sección 3.4.1, página 275	303
		3.7.3. Ejercicios Sección 3.5.1, página 290	306
		3.7.4. Ejercicios Sección 3.6.1, página 299	308
	~ .		
4.		ción de ecuaciones diferenciales mediante serie	
	-	ootencias	311
		Introducción	311
	4.2.	Puntos ordinarios de una ecuación diferencial	313
		4.2.1. Ejercicios	326
	4.3.	Puntos singulares de una ecuación diferencial	328
		4.3.1. Ejercicios	338
	4.4.	Ecuaciones de Bessel y de Legendre	339
		4.4.1. Ecuación de Bessel	340
		4.4.2. Ecuaciones de Legendre	348
		4.4.3. Ejercicios	351
		4.4.4. Ejercicios	354
	4.5.	Respuestas a los ejercicios propuestos	355
		4.5.1. Ejercicios Sección 4.2.1, página 326	355
		4.5.2. Ejercicios Sección 4.3.1, página 338	357
		4.5.3. Ejercicios Sección 4.4.3, página 351	358
		4.5.4. Ejercicios Sección 4.4.4, página 354	358
Bi	bliog	rafía	359
Ín	dice	alfabético	361

Índice de figuras

Familia de curvas de $xy = c$	16
Teorema de existencia y unicidad	18
Gráfica de la función $f(x)$ del Ejemplo 1.3.5	40
Gráfica de la solución del Ejemplo 1.3.5	41
Función $y = ce^{kt} \ c > 0, \ k > 0$	63
Función $y = ce^{kt} \ c > 0, \ k < 0 \dots \dots$	63
Curva logística con $M=4, P_0=1$ y $k=1/4$	71
Curvas ortogonales	81
Familias de curvas ortogonales	82
Familias de curvas ortogonales $x^2 + y^2 = c$	83
Método de Euler aplicado al PVI dado	86
Curvas de solución del Ejercicio 20 para $c=0$ y $c=1$	1 106
Curvas de solución del Ejercicio 20 para $c=-1,\mathrm{y}$	
$c = \mp 2$	107
Ejercicio 22, gráficas de $xy=c$ con $c=\pm 1, c=\pm 2$	108
Familias ortogonales. Problemas $1.a, 1.b \dots$	117
Familias ortogonales. Problemas $1.h \text{ y } 1.c$	118
Familias ortogonales. Problemas $1.e \text{ y } 1.f \dots$	118
Familias ortogonales. Problemas $1.g \ y \ 1.d \ \dots$	118
Movimiento oscilatorio	177
	180
	184
	185
-	187
	190
	Teorema de existencia y unicidad

6 Ecuaciones diferenciales

2.7. Curvas de Solución para raíces reales	191
2.8. Curvas de Solución para raíces repetidas	192
2.9. Curvas de Solución para raíces complejas	193
2.10. Curvas de resonancia para distintos valores de β	203
2.11. Circuito RLC	213
3.1. Uso de la transformada para un problema de valor	
	234
3.2. Gráfica de la función $f(t)$	245
3.3. Gráfica de una función periódica	255
3.4. Gráfica para el cambio de variable	263
3.5. Gráfica de la función escalón unitario	267
3 () a()	268
3.7. La función $f(t)$	268
3.8. La función $f(t-a)$	269
3.9. Gráfica de la función $f(t)$ del Ejemplo 3.4.17	270
3.10. Gráfica de una función periódica	273
3.11. Problema 51	277
3.12. Problema 52	277
3.13. Problema 56	278
3.14. Problema 58	278
3.15. Gráfica del voltaje contra t	293
O 1	342
1	343
4.3. Los primeros cinco polinomios de Legendre	351

Índice de cuadros

1.1.	Valores de la solución del PVI calculados por el método de Euler	86
2.1.	Posibles formas de y_p	159
2.2.	Magnitudes eléctricas	214
2.3.	Analogías entre sistemas mecánicos y eléctricos	216
3.1.	Transformada de Laplace	238
3.2.	Transformadas de Laplace de uso frecuente (1)	300
3.3.	Transformadas de Laplace de uso frecuente (2)	301

Prólogo

Este texto es el resultado de varios años de trabajo de los autores como profesores del curso de ecuaciones diferenciales que se imparte en la Universidad EAFIT. Una de las características del libro que presentamos es la gran cantidad de problemas resueltos y el modo sencillo en que se exponen los temas, de forma tal, consideramos, que el texto se acomoda perfectamente a las necesidades del grupo de estudiantes a los que va dirigido.

Con este texto pretendemos suplir una de las grandes falencias que se presentan en nuestro medio: existen muchos textos sobre el tema, pero sus contenidos no son adecuados a las necesidades de los programas vigentes. Esta razón nos ha motivado a elaborar un texto que se ajuste a la realidad de nuestro currículo y las nuevas estrategias de enseñanza que plantean los recientes cambios que ha sufrido el curso de ecuaciones diferenciales.

Los autores agradecemos de un modo muy sincero a la Universidad EAFIT y a todas aquellas personas que de una o otra forma hicieron posible que este proyecto fuese realidad.

Orlando García Jaimes Jairo Villegas Gutiérrez Jorge I. Castaño Bedoya Albeiro Sánchez Cano

Capítulo 1

Ecuaciones diferenciales de primer orden

1.1 Conceptos básicos

Una ecuación diferencial es una ecuación en la que intervienen una función desconocida y una o más de sus derivadas. Si la función tiene sólo una variable independiente, las derivadas serán ordinarias y la ecuación se llama ecuación diferencial ordinaria. Por ejemplo,

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 0 (1.1.1)$$

es una ecuación diferencial ordinaria en la que y = y(x) es una función diferenciable de x. Si la función tiene dos o más variables independientes, las derivadas serán parciales y la ecuación en este caso se llama ecuación en derivadas parciales. Por ejemplo,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0 \tag{1.1.2}$$

es una ecuación en derivadas parciales, donde u=u(x,y,z) es una función derivable en las variables x,y y z. En este libro estudiamos solamente ecuaciones diferenciales ordinarias.

Además del tipo (ordinarias o parciales), las ecuaciones diferenciales pueden clasificarse por orden y por grado. El orden de la ecuación diferencial es el orden de la más alta derivada que aparece en la ecuación. El grado de una ecuación diferencial es la potencia más alta a la que está elevada la derivada de mayor orden (siempre que la ecuación esté escrita en forma polinómica en cuanto a las derivadas y a la variable dependiente). Por ejemplo, la ecuación 1.1.1 es de orden 2 y grado 1, mientras que la ecuación

$$y'' - x \operatorname{sen} y = 0$$

es de orden 2, pero no se le asigna grado alguno, ya que el término sen y no se puede escribir en forma polinómica.

Otro concepto importante en el estudio de las ecuaciones diferenciales es el de la linealidad o no linealidad. La ecuación diferencial

$$F(x, y, y', \dots, y^{(n)}) = 0$$

se llama lineal si F es una función lineal de las variables $y,y',\ldots,y^{(n)}$. Así, la forma general de una ecuación lineal de orden n puede escribirse como

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = h(x).$$
 (1.1.3)

Observe que las ecuaciones diferenciales lineales se caracterizan por lo siguiente:

- a) La función y y sus derivadas están elevadas a la potencia 1, es decir, son de primer grado.
- b) Cada coeficiente depende de la variable independiente.

Si una ecuación diferencial no cumple lo anterior, se dice que la ecuación es no lineal. Si en la ecuación 1.1.3, h(x) = 0, la ecuación diferencial se llama homogénea; en caso contrario, es no homogénea.

Ejemplo 1.1.1. Clasifique las siguientes ecuaciones diferenciales según su tipo, orden, grado (cuando tenga sentido) y linealidad.

1.
$$y' + 4y = x^3 + 5$$

2.
$$(y''')^2 - 6y = 3$$