Contenido

1	Intr	roducción	21
2	Sim 2.1 2.2	ulación numérica de turbomáquinas hidráulicas Estado del arte Antecedentes de operación de turbinas Francis en condiciones	25 26
		desfavorables	30
3	Fue	ntes de error en la simulación de turbomáquinas	37
	3.1	Fuentes de error en los cálculos numéricos	37
	3.2	Errores de modelado en las turbomáquinas	40
		3.2.1 Interacción rotor-estator	41
	3.3	Errores numéricos en las turbomáquinas	43
4	Cor	nsideraciones generales sobre la simulación	45
	4.1	El proceso de simulación	45
		4.1.1 Objetivos de la simulación	45
		4.1.2 Evaluación de pérdidas	46
		4.1.3 Subdivisión del dominio	46
		4.1.4 Enmallado	48
	4.2	Análisis del flujo	49
	4.3	Procesos no estacionarios	53
	4.4	Revisión del estado del arte en simulaciones no estacionarias en	
		turbinas Francis	57
5	Ger	neración de la geometría y proceso de mallado	61
	5.1	Notación empleada en las simulaciones	61
	5.2	Generación de la malla	63
		5.2.1 Mallado de la carcasa espiral	64
		5.2.2 Mallado de la corona de los álabes fijos y móviles	66
		5.2.3 Mallado del rotor	68
		5.2.4 Mallado del tubo de descarga	68

6	\mathbf{Sim}	ulaciones estacionarias	71
	6.1	Curva característica	71
	6.2	Análisis de las pérdidas hidráulicas	72
	6.3	Eficiencia	76
	6.4	Metodología para las simulaciones estacionarias	76
		$6.4.1 \text{Simulación tipo } 1 \dots \dots$	80
		$6.4.2 \text{Simulación tipo } 2 \dots \dots$	81
		6.4.3 Comentarios adicionales	82
		$6.4.4 \text{Etapa de proceso} \dots \dots$	84
		6.4.5 Validación frente a medidas experimentales $\ldots \ldots$	85
	6.5	Resultados de las simulaciones estacionarias de la turbina	86
		6.5.1 Determinación de la curva característica de la turbina	
		$(Hill \ chart) \ \ldots \ $	87
		6.5.2 Pérdidas energéticas	89
		6.5.3 Comparación con experimentos	90
	6.6	Comentario final acerca de las simulaciones estacionarias	93
7	\mathbf{Sim}	ulaciones transitorias	95
	7.1	Descripción de la interacción rotor-estator	96
		7.1.1 Frecuencias propias de la interacción rotor-estator	97
	7.2	Dinámica vortical en el tubo de descarga	98
		7.2.1 Frecuencias propias del vórtice en el tubo de descarga .	98
	7.3	Metodología para las simulaciones no estacionarias	99
		7.3.1 Consideraciones adicionales	103
	7.4	Medidas experimentales	104
	7.5	Resultados de las simulaciones no estacionarias	107
		7.5.1 Estudio de la interacción rotor-estator	107
		de la turbina Francis	111
		7.5.3 Dinámica vortical en el tubo de descarga	115
	7.6	Comentario final acerca de las simulaciones transitorias \ldots .	120
8	Sim	ulación de los modos anormales de funcionamiento	123
	8.1	Introducción	123
	8.2	Ciclo de vida de una turbina Francis	125
		8.2.1 Aspectos generales del ciclo de vida de una turbina	126
	8.3	Modos de falla de una turbina hidráulica	130
		8.3.1 Erosión	130
		8.3.2 Cavitación \ldots	141
		8.3.3 Fugas	146
		8.3.4 Fatiga	146

9	\mathbf{Res}	ultados de los modos anormales de funcionamiento	153
	9.1	Erosión	153
		9.1.1 Resultados obtenidos en el modo de erosión	156
	9.2	Fugas hidráulicas	167
		9.2.1 Resultados obtenidos en el modo de fugas	169
	9.3	Cavitación	172
		9.3.1 Resultados obtenidos en el modo de cavitación	173
	9.4	Fatiga	179
		9.4.1 Estimación de las cargas alternantes en el rodete	180
		9.4.2 Resultados en el modo de fatiga para el rodete	182
	9.5	Comentario final acerca de los modos anormales de operación $% \mathcal{A}$.	188
10 Conclusiones y perspectivas			191
11	Ane	exos	199
	11.1	Metodología para la generación de la malla en el anillo de álabes	
		fijos y móviles	199
	11.2	Implementación de variables para el cálculo de la potencia y las	
		pérdidas hidrodinámicas	202
	11.3	Configuración para el cálculo en paralelo	203
Bi	Bibliografía		

Índice de figuras

Figura 1.1	Malla computacional y distribución de presiones alrede- dor de un rodete de una turbina Francis	22
Figura 1.2	Simulación no estacionaria de la torcha que aparece a la salida del rotor de una turbina Francis	23
Figura 3.1 Figura 3.2	Fuentes de error y división de una tarea CFD Modelado del acople rotor-estator con el método <i>frozen</i> <i>rotor</i> . La velocidad c se transforma según $c = v + \omega \times r$ para cada nodo de la interfaz	38 42
Figura 4.1	Geometría de una turbina Francis	46
Figura 4.2	Mallado tipo del primer dominio sugerido	47
Figura 4.3	Detalle de la malla del segundo dominio	47
Figura 4.4	Comportamiento del valor de presión estática frente al tamaño de la malla para el segundo dominio de cálculo	
	sugerido	49
Figura 4.5	Comparaciones entre las simulaciones y los experimentos	40
Figure 4.6	Campo de presiones en la superficie del reter de una tur	49
riguia 4.0	bina Francis a 10 MW	52
Figura 4.7	Visualización del flujo separado en el codo del turbo de	
	descarga FLINDT	53
Figura 4.8	Esquema de interfaz deslizante con mallas solapadas no	56
Figura 4.0	Diagrama de isoaficiancias típico de una turbina Francis	58
Figura 4.5	Interacción rotor-estator entre los álabes directrices y los	00
i iguita i.ito	del rodete en una turbina Francis	60
Figura 5.1	Corte transversal de la turbina Francis. Localización de sus componentes (izquierda). Nomenclatura abreviada pa- ra las diferentes regiones consideradas (derecha)	62

Figura 5.2	Zonas con diferente sección transversal en la carcasa es- piral de una turbina Francis (izquiarda). Topología <i>a-arid</i>
	sobre una geometría circular (derecha)
Figura 5.3	Sección 1 de la carcasa espiral (izquierda). Topología de
i iguia 0.0	bloques (derecha)
Figura 5.4	Sección 2 de la carcasa espiral (izquierda) Topología de
i iguita 0.1	bloques (centro y derecha)
Figura 5.5	Malla con <i>o-grid</i> colapsada
Figura 5.6	Malla completa para la carcasa espiral de la turbina Fran-
i iguita olio	cis de la central La Herradura
Figura 5.7	Verificación de los criterios de calidad de la malla para la
i iguita oiri	carcasa espiral
Figura 5.8	Malla generada para el canal hidráulico formado por dos
0	álabes consecutivos. Álabes fijos v móviles
Figura 5.9	Verificación de los criterios de calidad de la malla para
0	los álabes fijos y móviles
Figura 5.10	Ortogonalidad de la malla respecto a los álabes fijos y la
0	zona de entrada
Figura 5.11	Malla generada para el canal hidráulico formado por ála-
0	bes consecutivos en el rodete
Figura 5.12	Verificación de los criterios de calidad para la malla del
-	rotor. Valor del determinante, 0.4-1 (derecha). Valor de
	los ángulos, 28-88°(izquierda)
Figura 5.13	Topología para un canal hidráulico del rodete
Figura 5.14	Malla generada para el tubo de aspiración
Figura 5.15	Topología utilizada para la malla del tubo de aspiración
Figura 6.1	Mapa de distribución de la energía y las eficiencias en una
D : 6.0	turbina Francis
Figura 6.2	Identificación de Secciones e interfaces de los componen-
D : <i>C</i> 0	tes de una turbina Francis
Figura 6.3	Independencia del torque frente al tamano de malla
Figura 6.4	Enmallado de los componentes
Figura 6.5	Interfaces simulation tipo 1
Figura 6.6	Dominios considerados en la simulación tipo 1
Figura 6.7	Interfaces de simulación tipo 2
Figura 6.8	Dominios considerados en la simulación tipo 2
Figura 6.9	Carrera del servomotor vs. la apertura de los álabes del
	distribuidor
Figura 6.10	Illustración del diámetro de apertura
Figura 6.11	Evolución de los residuos de masa y momento
Figura 6.12	Convergencia de las variables de monitoreo

Figura	6.13	Curvas características para las diferentes aperturas men-	
		cionadas	87
Figura	6.14	Curvas de eficiencia para las diferentes aperturas mencio-	
		nadas	88
Figura	6.15	Potencia frente a caudal	88
Figura	6.16	Fuerza axial y fuerza radial vs. caudal	89
Figura	6.17	Pérdidas en la cámara espiral	90
Figura	6.18	Pérdidas en el distribuidor	90
Figura	6.19	Pérdidas en el rodete	91
Figura	6.20	Torque frente a caudal experimental y calculado	92
Figura	6.21	Potencia frente a caudal. Curvas de fabricante, experi-	
		mental y numérica	94
Figura	7.1	Variación temporal de la presión en el distribuidor	97
Figura	7.2	Frecuencias características de la interacción rotor-estator	
		y de la torcha en el distribuidor de una turbina Francis .	99
Figura	7.3	Dominio CFD	100
Figura	7.4	Mallas del dominio CFD	102
Figura	7.5	Comportamiento de los residuos de masa y momento fren-	
		te al número de iteraciones	104
Figura	7.6	Posición e instalación de los sensores de presión	105
Figura	7.7	Secciones de medición en el tubo de descarga	105
Figura	7.8	Posición e instalación de las galgas extensiométricas	106
Figura	7.9	Variación del coeficiente de presión para el punto φ_1^*	108
Figura	7.10	Variación del coeficiente de presión para el punto φ_1^* sin	
		inyección de aire	109
Figura	7.11	Variación del coeficiente de presión para los puntos φ_2^* ,	
		$\varphi_3^*, \varphi_4^*, y \varphi_5^*, \sin$ inyección de aire $\ldots \ldots \ldots \ldots$	110
Figura	7.12	Evolución temporal en cada sensor de la sección A del	
		tubo de descarga del coeficiente de presión para los puntos	
		$\varphi_1^*, \varphi_2^* \neq \varphi_3^*$ (datos experimentales)	112
Figura	7.13	Evolución temporal en cada sensor de la sección A del	
		tubo de descarga del coeficiente de presión para los puntos	
		$\varphi_4^* \ge \varphi_5^*$ (datos experimentales)	113
Figura	7.14	Evolución temporal en cada sensor de la sección A del	
		tubo de descarga del coeficiente de presión para los puntos	
		$\varphi_1^*, \varphi_2^* \neq \varphi_3^*$ (simulación numérica)	114
Figura	7.15	Evolución temporal en cada sensor de la sección A del	
		tubo de descarga del coeficiente de presión para los puntos	
		φ_4^* y φ_5^* (simulación numérica)	115
Figura	7.16	Espectro de las señales de coeficiente de presión en ca-	
		da sensor de la sección A del tubo de descarga para los	
		puntos de operación φ_1^*, φ_2^* y φ_3^*	116

Figura 7.17	Espectro de las señales de coeficiente de presión en ca- da sensor de la sección A del tubo de descarga para los	
	ua sensor de la sección X del tubo de descarga para los puntos de operación $(a^*, y_i)a^*$	117
Figura 7.18	Coeficiente de presión ve tiempo para (a^*) (arriba) Es-	111
rigura 1.10	pectro para φ_1^* (abajo)	118
Figura 710	Visualización del vórtice (torcha) en el punto de opera-	110
i iguia 1.19	ción c^*	110
Figura 7.20	Coeficiente de presión ve tiempo para (a^*) (arriba) Es-	110
1 iguia 1.20	pectro para φ_2^* (abajo)	119
Figura 7.21	Torcha formada en el punto de operación ω^*	120
1 iguia 1.21	Torena formada en el punto de operación $\varphi_2 \ldots \ldots$	120
Figura 8.1	Fenómenos hidráulicos que se presentan en diferentes con-	
0	diciones de operación. Cavitación a la entrada del álabe	
	(izquierda). Cavitación <i>whirl</i> con baja carga (derecha) .	124
Figura 8.2	Fenómenos hidráulicos que se presentan en diferentes con-	
0	diciones de operación. Cavitación entre álabes (izquier-	
	da). Movimiento de burbujas en un rodete Francis (dere-	
	cha)	125
Figura 8.3	Daño en el <i>linner</i> de una turbina hidráulica, causado por	
	la erosión debida a partículas de arena en el agua	126
Figura 8.4	Ciclo de vida de una turbina hidráulica	127
Figura 8.5	Aproximación del ciclo de vida	129
Figura 8.6	Mecanismos de erosión. a) Corte por abrasión; b) Fatiga	
	superficial; c) Deformación plástica; d) Fractura frágil .	132
Figura 8.7	Representación esquemática de la capa límite en la for-	
	mación de un vórtice de herradura	134
Figura 8.8	Líneas de corriente para el vórtice a un Reynolds de	
	$5.0 \ge 10^3 \ldots \ldots$	134
Figura 8.9	Fuerzas que actúan sobre las partículas en un fluido $\ .$.	135
Figura 8.10	Zonas típicas de erosión por cavitación para una turbina	
	Francis. a) y b) cavitación de borde de ataque (<i>leading</i>	
	edge cavitation); c) viaje de burbujas (travelling cavita-	
	tion bubble); y d) vórtice entre álabes (inter-cavitation	
	vortex)	143
Figura 8.11	Fugas de agua. Volumen ocupado por el agua	147
Figura 8.12	Falla por fatiga en el álabe del rodete de una turbina	
	Francis	148
Figura 8.13	Tipos de elementos y su dimensión. a) Elementos barras,	
	1D; b) Elementos triangulares, 2D; c) Elementos tetrae-	
	dros, 3D; y d) Elementos hexaedros, 3D	149
Figura 8.14	Representación de la interacción fluido-estructura	150
Figura 8.15	Curva típica del límite de fatiga vs. el número de ciclos.	151

Figura 9.1	Dominios de análisis y condiciones de frontera para el análisis de erosión. A. Álabes fijos y directrices, B. Rode- te. C. Tubo de aspiración; 1. <i>Inlet</i> , 2. Interfaz periódica,	154
D : 0.0	3. Internaz rotor-estator. 4. <i>Outlet</i> . 5. <i>Wall</i>	154
Figura 9.2	Distribución del tamano de las particulas en el tanque de carga	155
Figura 9.3	Patrones de daño. a) Álabes del rodete; b) Superficies <i>hub</i> y <i>shroud</i> del rodete	157
Figura 9.4	Patrones de daño. a) Álabes fijos y directrices; b) Superficie de las cubiertas anterior y posterior; c) Daño generado por las partículas en las respectivas superficies	157
Figura 9.5	Trayectoria de las partículas y su impacto en las cubiertas anterior y posterior de una turbina Francis	158
Figura 9.6	Trayectoria recorrida según tamaño de partícula. a) Diámetro de partículas inferior que 40 μ m; b) Diámetro de partículas entre 40 y 100 μ m	158
Figura 9.7	Trayectoria recorrida según el tamaño de partícula. a) Diámetro de partículas entre 100 y 200 μ m; b) Diámetro de partículas mayor que 200 μ m	158
Figura 9.8	Patrones de daño. a) Álabes del rodete; b) Superficies <i>hub</i> v. <i>shroud</i> del rodete	159
Figura 9.9	Patrones de daño. a) Álabes fijos y directrices; b) Super- ficie del <i>faceplate</i> ; c) Daño generado por las partículas en las respectivas superficies	159
Figura 9.10	Trayectoria de las partículas y su impacto en las cubiertas anterior y posterior	160
Figura 9.11	Trayectoria recorrida según el tamaño de partícula. a) Diámetro de partículas menor que 40 μ m; b) Diámetro	160
Figura 9.12	de particulas mayor que 40 μ m y menor que 100 μ m 2 Trayectoria recorrida según el tamaño de partícula. a) Diámetro de partículas mayor que 100 μ m y menor que 200 μ m; b) Diámetro de partículas mayor que 200 μ m	160
Figura 9.13	 Velocidad de erosión de los componentes de la turbina funcionando a diferentes potencias 	162
Figura 9.14	Pérdida de material en función del tiempo	162
Figura 9.15	Origen y longitud del vórtice de herradura en el anillo de	102
Ŭ	álabes	163
Figura 9.16	Detalle del vórtice de herradura en el anillo de álabes	164
Figura 9.17	Daño de erosión por partículas generado por el vórtice de herradura en el álabe fijo	164

Figura 9.18	Zonas de erosión: a) Región erosionada por las partículas a una potencia de 10 MW. b) Región erosionada por las partículas a una potencia de 4 MW	165
Figura 9.19	Vórtice entre los álabes. Ausencia del vórtice entre los álabes a una potencia de 10 MW (izquierda). Formación del vórtice a una potencia de 4 MW (derecha). a) Región que ubica al vórtice entre los álabes a una potencia de 4 MW	166
Figura 9.20	Velocidades de las partículas de arena entre la entrada y salida del rodete. Potencia de 10 MW (izquierda). Potencia de 4 MW (derecha)	166
Figura 9.21	Dominio del análisis en el modo de fugas	168
Figura 9.22	Ensample del rodete y la cubierta anterior	168
Figura 9.22	Condiciones de frontera para el análisis de fuga	170
Figura 9.24	Comparación de los coeficientes de velocidad	171
Figura 9.24 Figura 9.25	Distribución de la presión en el laberinto de fuga. Valor mínimo: 0.665 MPa. Valor mínimo: 2.61 MPa	171
Figure 0.26	Distribución de velocidados en el tube de espiración: efec	111
Figura 9.20	to de la tubería en el comportamiento de flujo	172
Figura 9.27	Coeficiente de velocidad axial del agua debajo de la salida	1 = 0
	de agua del tubo de conexion	173
Figura 9.28	Dominios de análisis y condiciones de frontera para cavi- tación	174
Figura 9.29	Distribución del coeficiente de cavitación κ (KVAP) en el tubo de aspiración, a una potencia de 10 MW. Valor	
	mínimo: 0. Valor máximo: 1.8. a) Vapor de agua	175
Figura 9.30	Distribución del coeficiente de cavitación κ (KVAP) en el rodete de la turbina, a una potencia de 10 MW. a) Región	
	con coeficiente de cavitación $\kappa = 5.0$	175
Figura 9.31	Distribución del coeficiente de cavitación κ (KVAP) en el tubo de aspiración, a una potencia de 4 MW. Valor mínimo: 0 (-), Valor máximo: 17 (-), a) Región con coeficiente	
	de cavitación $\kappa = 17.0$ (-)	176
Figura 9.32	Distribución del coeficiente de cavitación κ (KVAP) en el tubo de aspiración a una potencia de 2 MW Valor	
	mínimo: 0. Valor máximo: 1.8. a) Vapor de agua	176
Figura 9.33	Detalle del coeficiente de cavitación κ (KVAP) en el rodete	
	de la turbina, a una potencia de 2 MW	176
Figura 9.34	Coeficiente de cavitación κ (KVAP) en el tubo de aspiración, a una potencia de 2 MW. a) Región con coeficiente	
	de cavitación $\kappa = 50.0$	177

Figura 9.35	Distribución del coeficiente de cavitación κ aguas abajo	
	del rodete	177
Figura 9.36	Fracción de vapor de agua a una potencia de 10 MW.	
	Fracción de vapor igual a 0.1 (-) (izquierda). Fracción de	
	vapor igual a 0.5 (-) (derecha) \ldots	178
Figura 9.37	Fracción de vapor de agua a una potencia de 10 MW.	
_	Fracción de vapor igual a 0.9 (-) (izquierda). Fracción de	
	vapor igual a 0.994 (-) (derecha) $\ldots \ldots \ldots \ldots \ldots$	178
Figura 9.38	Energía potencial de las cavidades de vapor y detalle a	
	la salida del rodete. Valor mínimo: 0 J. Valor máximo:	
	17007 J	179
Figura 9.39	Dominios y condiciones de frontera para la fatiga	180
Figura 9.40	Malla generada para el rodete	181
Figura 9.41	Distribución de presiones a potencias de 4 y 10 MW	183
Figura 9.42	Distribución de presiones a potencias de 4 y 10 MW $$	184
Figura 9.43	Comparación de presiones calculadas	185
Figura 9.44	Esfuerzos generados en el rodete a 10 MW	185
Figura 9.45	Desplazamientos en el rodete a 10 MW	186
Figura 9.46	Esfuerzos en el rodete con una potencia de 4 MW	187
Figura 9.47	Desplazamientos en el rodete, a una potencia de $4~\mathrm{MW}$	188
Figura 11.1	Bloque inicial en álabes consecutivos	100
Figura 11.1	Topología de bloques álabes	200
Figure 11.2	Provocción de los bloques a la entrada y salida del agua	200
Figure 11.4	Definición de poriodicidad	200
Figure 11.4	Definición de la familia de nantes	201
Figure 11.0	Malla final para los álabos filos y los álabos márilos	201
Figura 11.0	Mana mai para los alabes iljos y los alabes moviles	202
rigura 11.7	Connguración de calculo en paralelo	205

Índice de tablas

Tabla 6.1	Tipos de simulaciones	77
Tabla 6.2	Resumen de mallas generadas	78
Tabla 6.3	Características específicas de las mallas estructuradas	79
Tabla 6.4	Condiciones de frontera simulación tipo 1	81
Tabla 6.5	Condiciones de frontera simulación tipo 2	83
Tabla 6.6	Datos experimentales	92
Tabla 6.7	Datos numéricos	93
Tabla 6.8	Porcentaje de error en las comparaciones entre valores	
	numéricos y experimentales	93
Tabla 7.1	Parámetros de la simulación no estacionaria	100
Tabla 7.2	Tamaño de las mallas consideradas	101
Tabla 7.3	Características de la malla media. Desarrollada en ICEM	
	CFD con una topología estructurada	101
Tabla 7.4	Condiciones de frontera	102
Tabla 7.5	Puntos de operación	103
Tabla 8.1	Constantes para los modelos de erosión $\ldots \ldots \ldots$	141
Tabla 9.1	Características de las mallas para el dominio analizado en	
	la erosión	155
Tabla 9.2	Propiedades de las partículas sólidas en el dominio de los	
	análisis	155
Tabla 9.3	Condiciones de frontera para el dominio analizado en el	
	modo de erosión	156
Tabla 9.4	Velocidades de erosión a diferentes potencias	161
Tabla 9.5	Angulos de impacto de las partículas sobre las paredes del	
	anillo a 10 MW	164
Tabla 9.6	Angulos de impacto de las partículas sobre las paredes del anillo a 4 MW	165
Tabla 9.7	Características de las mallas para el dominio analizado en	100
10010 0.1	el modo de fugas	169

Tabla 9.8 Condiciones de frontera para el dominio analizado en	el
modo de fugas \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	169
Tabla 9.9 Comparación de las simulaciones con y sin fugas	170
Tabla 9.10 Características de las mallas empleadas en el modo de	ca-
vitación	174
Tabla 9.11 Condiciones de frontera para el dominio en el modo	de
cavitación	174
Tabla 9.12 Características de las mallas para el dominio analizado	en
fatiga \ldots	180

Presentación

Este libro recoge los resultados más relevantes acerca de la simulación computacional de máquinas hidráulicas, obtenidos en el desarrollo del proyecto de investigación Modelación dinámica computacional de la turbina Francis en condiciones reales de explotación, que permita la simulación del comportamiento de la condición de estado de la turbina en diferentes modos de fallas, desarrollado conjuntamente entre el Grupo de Mecánica Aplicada de la Universidad EAFIT y el Grupo de Mecánica de Fluidos de la Universidad Autónoma de Occidente. Dicho proyecto de investigación forma parte del contrato N.º 272 del 11 de diciembre de 2006, suscrito entre Colciencias, Empresas Públicas de Medellín y la Universidad EAFIT, para realizar el proyecto de investigación DIFRANCI, Investigación para el diagnóstico técnico de una turbina Francis en la central hidroeléctrica La Herradura, bajo una aproximación holística.

Como parte del desarrollo del proyecto DIFRANCI, también se suscribió un acuerdo de cooperación académica y científica en el campo *Hydropower Science and Technology* con la École Polytechnique Fédérale de Lausanne (EPFL), Suiza, con la colaboración directa del director del Laboratorio de Máquinas Hidráulicas, el profesor François Avellan.

Durante los últimos 20 años, la aplicación del software Computational Fluid Dynamics, CFD, a problemas industriales, ha venido incrementándose día tras día. La principal ventaja de la CFD yace, por un lado, en la predicción de las condiciones de funcionamiento; y, por el otro, en el análisis del flujo interno o externo, algo que desde el punto de vista experimental a veces es difícil o imposible de lograr. Una gran ventaja frente a las medidas experimentales, es la disponibilidad de las ecuaciones de evolución temporal del flujo. Además, la realización de estudios paramétricos, por ejemplo, variaciones en la geometría y condiciones de carga, es rápida y barata. Sin embargo, el flujo en una turbomáquina hidráulica es extremadamente complejo, puesto que generalmente es turbulento, no estacionario, aparecen altos gradientes de presión, posiblemente bifásicos agua-aire y altamente tridimensionales, con fuertes efectos de la rotación y la curvatura. Por estas razones, la simulación numérica y predicción del flujo en estas máquinas es una tarea muy exigente que no está exenta de dificultades, y requiere de grandes esfuerzos por parte de personal experimentado. Debido a ello, el uso de esta técnica no es muy común en países en vías de desarrollo.

Adicionalmente, hasta donde llega nuestro conocimiento, no existe en la literatura especializada un documento dedicado a abordar las especificidades de la simulación numérica de turbomáquinas hidráulicas que utilice la CFD; por ello, los autores creemos que este libro puede resultar de gran utilidad a aquellos ingenieros que deseen o necesiten adentrarse en el mundo de la simulación numérica de sistemas, con elementos rotantes tales como turbinas, bombas o aerogeneradores.

El texto se encuentra organizado de la siguiente forma: en el Capítulo 1 se realiza una introducción que contextualiza el papel de la simulación numérica en el campo de las turbomáquinas hidráulicas, seguida, en el Capítulo 2, de una revisión del estado del arte en este mismo campo. El Capítulo 3 se dedica a la discusión de las diferentes fuentes de error que aparecen cuando se realizan simulaciones numéricas en turbomáquinas hidráulicas. El Capítulo 4 aborda la revisión de las simulaciones recientes de los procesos no estacionarios relevantes en turbinas Francis, es decir, la interacción rotor-estator y la dinámica vortical en el tubo de descarga. Al estudiar la simulación de una turbina Francis, es necesario tener en cuenta sus especificidades, tal como se explica en el Capítulo 5, para cuyo desarrollo fueron imprescindibles los comentarios y sugerencias del profesor Francois Avellan. El proceso de mallado de los diferentes dominios computacionales se describe con gran detalle en el Capítulo 6. El Capítulo 7 describe tanto la metodología como los resultados obtenidos en las simulaciones estacionarias, las cuales estuvieron encaminadas a determinar la curva característica de la turbina y las pérdidas de energía entre sus diferentes componentes. El Capítulo 8 expone la metodología y los resultados alcanzados con las simulaciones no estacionarias, dirigidas a describir la interacción rotor-estator y la dinámica vortical en el tubo de descarga, fenómenos que se compararon con medidas experimentales tomadas en el sitio. En el Capítulo 9 se repasan diferentes modos anormales de funcionamiento de la turbina Francis (modos de falla), que repercuten en el ciclo de vida de la máquina, tales como la erosión, las fugas, la cavitación y la interacción fluido-estructura. El Capítulo 10 presenta los resultados obtenidos para estos modos de falla en diferentes puntos de operación de la turbina: el nominal y un punto por debajo del rango de operación recomendado por el fabricante, así como su influencia en el ciclo de vida de la máquina. La sección de Anexos, en el Capítulo 11, resume los principales resultados obtenidos, y presenta las recomendaciones y sugerencias para la operación de la turbina en condiciones por fuera del punto de diseño.

Capítulo 1 Introducción

La energía hidroeléctrica es una fuente limpia y renovable, puesto que utiliza únicamente agua. Las máquinas que procesan esa fuente de energía son las turbinas hidráulicas, construidas desde finales del siglo XIX. Su tecnología ha alcanzado un gran desarrollo, y la eficiencia máxima lograda supera el 95%. Sin embargo, conseguir esta eficiencia requiere un gran esfuerzo de ingeniería, ya que las turbinas hidráulicas usualmente son productos individuales y deben diseñarse para unas condiciones locales determinadas, tales como la altura de salto (*head*) y el caudal o descarga, que demandan un diseño específico para sus diferentes componentes. El proceso tradicional de diseño contempla experimentos, medidas y análisis de modelos, lo cual implica una gran inversión de tiempo y dinero. En los últimos 15 o 20 años, la simulación numérica o CFD (*Computational Fluid Dynamics*) se ha adoptado como un elemento más en el proceso de diseño y análisis de turbinas, y ha permitido disminuir los tiempos de desarrollo y los costos.

Además, en el sector hidroeléctrico, pequeñas mejoras en la geometría de los elementos rotantes de una turbina hidráulica pueden tener un gran efecto positivo, desde el punto de vista de costos de mantenimiento y operación. Sin embargo, para que dichas mejoras puedan identificarse en los primeros momentos del proceso de diseño, se necesita considerar todos y cada uno de los componentes e interacciones entre ellos. El proceso de optimización basado en la simulación consiste en un paquete de software de simulación avanzada, acoplado con un entorno CAD (*Computer-aided Design*), que puede desempeñar un papel crítico en los diseños preliminares, y ayuda a detectar posibles problemas y a encontrar el camino más rápido para la optimización de la máquina.

El primer paso en cualquier modelo CFD es crear una geometría que represente el objeto que va a ser modelado. Por consiguiente, se debe generar una malla como la que se muestra en la Figura 1.1, izquierda, donde viven las celdas o volúmenes de control. Una vez que la malla está finalizada, se especifican las condiciones iniciales de frontera y los valores de entrada, y el software resuelve las ecuaciones de estado para cada celda hasta que se obtiene una convergencia aceptable. Cuando el modelo ha sido resuelto, los resultados pueden analizarse numérica y gráficamente como se ilustra en la Figura 1.1, derecha.¹

Figura 1.1 Malla computacional y distribución de presiones alrededor de un rodete de una turbina Francis

De hecho, en los últimos años, con el rápido desarrollo de la tecnología computacional y la CFD avanzada, la simulación del flujo interno en componentes individuales o múltiples de una turbomáquina es casi una tarea rutinaria (Labrecque, Sabourin y Deschênes, 1996; Ruprecht, Heitele, Helmrich *et al.*, 2000; Ciocan, Iliescu, Vu *et al.*, 2007).

Sin embargo, el flujo en una turbina hidráulica es extremadamente complejo, puesto que generalmente es turbulento, no estacionario y aparece con altos gradientes de presión, posiblemente bifásico agua-aire, y altamente tridimensional (3D), con fuertes efectos de la rotación y la curvatura. Por estas razones, la simulación numérica y la predicción del flujo en estas máquinas es una tarea muy exigente y no está exenta de dificultades.

Una situación concreta en el caso de las turbinas hidráulicas, viene determinada por el hecho de la demanda variable de energía en el mercado, lo cual significa que el beneficio económico depende muy a menudo de la capacidad de operación eficiente con cargas parciales, lejos de las condiciones óptimas de funcionamiento. Sin embargo, cuando las turbinas Francis operan con carga parcial, presentan un vórtice muy intenso o torcha (*vortex rope*) a la salida del rotor. Conforme el flujo rotante se desacelera en el tubo de descarga, surge una inestabilidad hidrodinámica en la que el vórtice anterior cambia su posición de forma periódica, creando altas fluctuaciones de presión no estacionarias en las

¹Las figuras que no tienen fuente fueron elaboradas por los autores.

paredes del tubo de descarga, las cuales, con el tiempo, pueden llevar a un fallo por fatiga del material. Este fenómeno es especialmente severo cuando la frecuencia de las oscilaciones de la torcha se acopla con la frecuencia resonante de la turbina o del circuito. Dado que no es posible, o requiere una gran inversión de recursos, medir el comportamiento de la torcha en las turbinas en funcionamiento, la simulación numérica constituye una alternativa para obtener la frecuencia, la amplitud de los pulsos de presión y otros parámetros, bajo varias condiciones de operación y geometrías de turbina. Esta información posibilita optimizar el diseño de las turbinas para reducir la intensidad de la torcha y mitigar las fluctuaciones de presión residuales, minimizando el daño por fatiga. Sin embargo, para calcular esos efectos dinámicos, es esencial realizar una simulación transitoria del flujo, que incluye las diferentes interacciones entre los componentes. Debido a la no uniformidad del flujo en la carcasa espiral y al desigual posicionamiento de los álabes del distribuidor y del rodete, es necesario considerar la turbina completa con todos los canales hidráulicos del rotor y los álabes directrices con una malla suficientemente refinada. Actualmente, esa simulación está fuera del alcance de la capacidad de cálculo, por lo que en la literatura se encuentra que es común realizar simplificaciones en las simulaciones no estacionarias. En el Capítulo 4 se revisan algunas de esas aproximaciones.

Figura 1.2 Simulación no estacionaria (izquierda) de la torcha que aparece a la salida del rotor de una turbina Francis (derecha)

Fuente: Iliescu, M. S., Ciocan, G. D. y Avellan, F. (2008). "Analysis of the cavitating draft tube vortex in a francis turbine using particle image velocimetry measurements in two-phase flow". *Journal of Fluids Engineering*, vol. 130, núm. 2, 021105. doi:10.1115/1.2813052

Es necesario recalcar que el uso de la CFD en el diseño y análisis de turbomáquinas ha sido ampliamente aceptado por las grandes compañías hidroeléctricas en las últimas dos décadas. Esto se ve reflejado en el el artículo "Simulation Software" de la revista *Water Power* (Water Power, 2005). En este

artículo, los ingenieros de GE Hydro recalcan la importancia de las simulaciones en los procesos de diseño. Afirman por ejemplo que los resultados de las simulaciones no estacionarias que han realizado muestran una muy buena concordancia al comparar las predicciones de la simulación y las mediciones físicas. La diferencia entre los resultados experimentales y las predicciones numéricas fue menor de 2.5% para niveles medios de presión, aproximadamente igual a la exactitud con la que se realizaron las mediciones. También en la comparación de los campos de velocidad los ingenieros de GE Hydro afirman que la velocidad numérica promedio también mostró buena concordancia con las medidas físicas. En la simulación de los procesos transitorios, como la formación de la torcha en el tubo de descarga, el campo de vorticidad, que muestra la posición del vórtice fue correctamente predicho por los cálculos numéricos, con una diferencia de 5% del radio entre la posición predicha y la medida. La intensidad del vórtice es 18% más pequeña en los cálculos numéricos. Esta diferencia, concluyen los analistas, puede ser explicada por la malla relativamente gruesa usada para la modelación de la geometría del tubo, especialmente en la región del cono. Las simulaciones de la torcha (vortex rope) fueron comparadas con medidas experimentales detalladas, en condiciones libres de cavitación. Estos experimentos se realizaron en el laboratorio de maquinas hidráulicas de la Escuela Politécnica Federal de Lausana (EPFL) en Suiza.

En el mismo artículo se resalta que la exactitud de las predicciones para las cantidades globales del vórtice, la amplitud de la pulsación de presión y la frecuencia del vórtice, es realmente buena. Los análisis cuantitativos del campo de velocidad medio, el campo de velocidad promedio de fase, la vorticidad y la posición del centro del vórtice, también presentaron una buena predicción. Thi Vu, ingeniero hidráulico sénior de GE Energy, afirma que estos resultados confirman las ventajas del uso de la CFD para simular la torcha, para diseñar nuevas turbinas hidroeléctricas y para solucionar problemas de las existentes. También menciona las ventajas de aprovechar las capacidades de computación en paralelo de la CFD, utilizando un gran número de rápidos procesadores para reducir los tiempos de solución, preferiblemente a menos de 24 horas. Finalmente concluye diciendo que Ansys CFX permite diseñar turbinas de forma rápida y con un amplio rango de operación, ayudando a convertir a GE Energy en una empresa más competitiva para el mercado.