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Mathematics, rightly viewed, possesses not only truth, 
but supreme beauty–a beauty cold and austere, like that of sculpture, 

without appeal to any part of our weaker nature, 
without the gorgeous trappings of painting or music, 
yet sublimely pure, and capable of a stern perfection 

such as only the greatest art can show.

Bertrand Russell
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Preface

In 2010 I was asked to teach the course Geometry in Context, a

first semester course for students of the programs of Mathemati-

cal Engineering and Physical Engineering, at Universidad EAFIT,

in Medelĺın, Colombia. The goal of the course was that students

learned euclidean plane geometry in the classical way, and also that

they applied this theoretical knowledge in a real situation, by requir-

ing them to build a mechanism of their choice, which applied some

geometrical principle. In preparing the course I consulted several

books presenting euclidean plane geometry in the classical way. In

studying these books I started to feel uneasy, because the discussion

did not adhere to the modern standard of rigor, making proofs kind

of difficult to follow, at least to me. I was aware that the great math-

ematician David Hilbert had proposed a rigorous presentation of the

euclidean geometry of space in his book Grundlagen der Geometrie

(Foundations of Geometry)[4], published in 1899. I went to our uni-

versity’s library, looking for a copy of Hilbert’s book. Old books

are usually hard to read, and Hilbert’s book was in that category. I

kept looking for a modern book which explained Hilbert’s work more

clearly, and I stumbled upon the book Geometry: Euclid and Be-

yond [1], by R. Hartshorne. I browsed the book and I knew I had

found the reference I needed. The first chapter of the book presents

classical euclidean geometry pointing out its shortcomings, and the

second chapter presents Hilbert’s axiomatization of (plane) geometry

and discusses how to interpret and prove the propositions in Book I

of the Elements, in the light of Hilbert’s approach. When I began



reading chapter two more carefully I was amused when I found out

that Hartshorne’s presentation made it possible to introduce, in the

most natural way, non-euclidean geometries from the very beginning!

A subject that is usually taught in a Differential Geometry course.

But I soon realized that Hartshorne’s book is rather dense, going

too fast for a first semester student. My task in teaching the course

was to explain slowly and in complete detail, most of chapter two of

Hartshorne’s book. This book is an account of this effort. I follow

Hartshorne’s approach throughout, and I even paraphrase some of the

interesting problems he proposes.

vi



Acknowledgments

I want to warmly thank those who helped me, in one way or another,

in this enterprise. To Professor Jay Jorgenson, for his friendship and

encouragement, and for accepting being this work’s supervisor; to my
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Introduction

1.1 A Short History of Geometry

It is safe to say that the first geometric facts recorded in human his-

tory are found within the Egyptian and the Babylonian civilizations.

There is strong evidence suggesting that even the Pythagorean Theo-

rem was well known to these civilizations. However, these discoveries

were only empirical facts, geometrical regularities that seemed to oc-

cur in every case considered. From this evidence, they would come to

believe that these were universally true statements, although it seems

that nobody bothered to find out why these phenomena took place, or

how to “prove” that they were indeed valid in any case. I was not un-

til the Greeks that mathematicians discovered a trustworthy method

to know for sure the validity or falsity of any given geometric state-

ment. The method, known today as the axiomatic method, consists

in first taking certain geometrical facts, called axioms, or postulates,

or principles, as self-evident, and then, based only on them, and by

means of pure reasoning, to derive any other geometrical truth. This

is one of the most important inventions of humankind. It initiates

mathematics as we understand it today, and provides the paradigm

for half the scientific method, which is nothing else but the addition

of experimentation to the axiomatic methodology.



Within the Greek world, the peak of maturity of the axiomatic

method was attained with the “publication” of Euclid’s Elements.

Euclid lived approximately between the middle of the fourth century

B.C. and the middle of the third century B.C., mainly in Alexan-

dria, in the Hellenistic part of Egypt. The Elements is a collec-

tion of thirteen books, containing an axiomatic development of plane

and space geometry, elementary number theory and incommensurable

lines. Until the beginning of the twentieth century, the Elements was

the main textbook for teaching mathematics, especially geometry.

After its publication, various authors detected two weak points

in Euclid’s work: The feeling that the fifth postulate was not as

self-evident as the previous four, and that it should be derived from

them; and, secondly, the occasional departure from modern standards

of rigor, and even from his own standards.

The first weak point was detected almost immediately. It is even

believed that Euclid himself regarded the fifth postulate as differ-

ent from the other four, in that it was not as self-evident. He was

probably forced to add it when he realized that certain propositions

towards the end of Book I of the Elements could not be proved with-

out it. Throughout history, most scholars who attempted to remedy

this situation followed one of the following two strategies: i) they

struggled to “prove” the fifth postulate using only the first four; ii)

they attempted to introduce a new postulate that seemed more self-

evident than the fifth, and from which, in addition to the other four,

they could derive it. Ptolemy (100 A.D.-170 A.D., Alexandria), Pro-

clus (410 A.D.-485 A.D., Athens), Ibn al-Haytham (965 A.D.-1039

A.D., Cairo), Nasir al-Din al-Tusi (1201 A.D.-1274 A.D., Persia),

Sadr al-Din (son of Nasir al-Din al-Tusi), Giordano Vitale (1610 A.D.-

1711 A.D., Italy), Girolamo Saccheri (1667 A.D.-1733 A.D., Italy),

Johann Lambert (1728 A.D.-1777 A.D., Switzerland), are the most

eminent followers of the first approach. Omar Khayyám (1050 A.D.-

1123 A.D., Persia), John Playfair (1748 A.D.-1819 A.D., Scotland)

are among the most famous mathematicians who adopted the second

approach.
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The “proofs” provided by the ones who followed approach i) were

subsequently shown to be wrong, usually because their authors had

unconsciously used an “obvious” fact which turned out to be equiv-

alent to the fifth postulate. This makes their arguments ultimately

dependant on the fifth postulate itself.

Followers of approach ii) never succeeded in finding a postulate

as self-evident as the first four from which they could derive Euclid’s

fifth axiom. Many authors did find postulates with this property, but

as non self-evident as the fifth.

This state of affairs changed abruptly in the first half of the nine-

teenth century with the independent realization by Gauss (1817),

Lobachevsky (1829), and Bolyai (1831), of the existence of geome-

tries satisfying the first four postulates but not satisfying the fifth.

The existence of such geometries constitutes irrefutable proof that

the fifth postulate cannot be derived from the first four, in other

words, that the fifth postulate is independent from the other axioms.

This is considered one of the most important scientific discoveries

of all time, having a profound impact in our understanding of how

the human mind apprehends reality. In particular, it made evident

the distinction between formal discourse (theory) and the objects it

intends to describe (models), starting the development of one of the

central branches of mathematical logic, known today as Model The-

ory. The discovery of non-euclidean geometries, together with the

work of Gauss on curved surfaces, initiated a process, mainly led by

the great german mathematician Bernhard Riemann, that vastly gen-

eralized the subject of geometry, by defining Riemannian Manifolds,

and regarding them as the central object of study in geometry. This

development constituted the mathematical framework for the formu-

lation of Einstein’s Theory of General Relativity where Space-Time

is actually conceived as a Pseudo-Riemannian Manifold, a slight vari-

ation of Riemann’s original concept.

Let us now talk about the other weak point found in Euclid’s work,

namely the occasional departure from modern standards of rigor,

and even from his own standards. This criticism started with the
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revision of the foundations of geometry motivated by the discovery

of non-euclidean geometries. The criticism was centered around the

following issues:

1. Lack of recognition of the necessity of having primitive terms,

i.e., objects and notions that must be left undefined.

2. The use of the “superposition method” without any axioms

backing it up.

3. Lack of a concept of continuity needed to prove the existence

of some points and lines that Euclid constructs. This happens

already when proving Proposition 1 of Book I!

4. Lack of clarity on whether a straight line is infinite or boundary-

less in the second postulate.

5. Lack of the concept of betweenness, making some arguments

depend on the figure.

Different authors have found different ways to remedy this situa-

tion. Like David Hilbert, by rigorously filling in the gaps in Euclid’s

work; some others, like George David Birkhoff, by entirely remod-

elling the theory, formulating axioms around different concepts.

Let us consider Hilbert’s approach. In 1899 Hilbert published his

book “Grundlagen der Geometrie” (The Foundations of Geometry).

In this book, he proposes an axiomatic system for solid geometry,

one from which every theorem can be derived by following a strict

sequence of rules of inference, starting from a fixed set of formal as-

sumptions stripped of any intuitive content. For Hilbert, relying on

figures, using any intuitions about the nature of geometric objects, or

introducing any extra assumptions lying beyond the strict syntacti-

cal concepts, is completely ruled out. The book has figures, but they

are only used as a heuristic guide, and could be dispensed of without

affecting the content of the book. Grundlagen der Geometrie pre-

sented geometry for the first time in history, in a purely formal way,

i.e., in which the meaning given to the objects in question plays no
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role whatsoever. The only place where intuition plays a role is in the

choice of the axioms themselves. Once the axioms are chosen, the

original meaning of the objects can be forgotten without compromis-

ing in the least the development of the theory. It can be said that

Hilbert presents solid geometry so that it can be understood by lawyers

(no offense intended), in that it is not necessary to associate geomet-

rical images to the discourse, because the discourse is authentically

independent of any interpretation. Hilbert presented his axiomatic

system in groups of axioms, each group concerning an aspect of solid

geometry. Although Hilbert’s axioms formalize solid geometry, it is

possible to extract from it a subset of axioms for plane geometry.

The first group is formed by eight axioms, the so called Axioms of

Incidence, which capture the laws governing the incidence relations

between points, lines and planes in space. Only three of them are

necessary for doing plane geometry. The second group is formed by

four axioms called Axioms of Order (or Betweenness). These gov-

ern the behaviour of the intuitive notion that a point lies between

two other points. The four of them are necessary for doing plane

geometry. The third group is formed by six axioms, the Axioms of

Congruence, which capture the laws governing the behaviour of con-

gruence of segments and congruence of angles. These six axioms are

necessary for developing plane geometry.

For Hilbert’s program, the main goal is not only the formalization

of Euclidean geometry, but of mathematics as a whole. For him, the

most important problem of all mathematics was the foundation of

mathematics itself on a solid basis. This meant to Hilbert to recon-

struct his own discipline as a purely formal science. This is known

as Hilbert’s Formalization Program. He dreamed of presenting all of

Mathematics in the same way he had presented Solid Geometry. Any

formal system, as Hilbert envisioned it, must have two fundamental

properties: Consistency and Completeness. Consistency means that

it is not possible to derive within the theory some statement P and

its negation. Completeness, on the other hand, means that for each

statement P expressible within the system, either P or its negation¬P can always be derived. Consequently, a formal system is Con-
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sistent and Complete if for each statement P expressible within the

system, either P or ¬P can be derived from the axioms, but not both.

In his Grundlagen der Geometrie, Hilbert proves both the consistency

of this axiomatization, and the nonredundancy of the axioms, by con-

structing models of his system.

1.2 What you will and will not learn in this book

Although this is a book about plane geometry, it only contains very

basic results. The most sophisticated results appear in the last chap-

ter, in which many of the propositions of Book I of Euclid’s Ele-

ments are proved. For example, you will not find any mention of the

Pythagorean theorem. The emphasis is in the rigorous development

of the material, following Hilbert’s axiomatic system. Many results

are presented which are “intuitively obvious”, and whose proofs are

rather involved, pointing out the price one has to pay for deriving ev-

erything from the axioms through pure reasoning. In this book you

will also learn about plane non-euclidean geometry from the very be-

ginning. This is made possible by the method adopted of thinking

of plane geometries as set theoretical structures in which a certain

collections of axioms hold.

1.3 Audience prerequisites and style of explanation

This book is essentially self-contained. The only previous knowledge

required is high school algebra and the understanding that usual al-

gebraic rules for transforming expressions, and solving equations and

inequalities, can actually be derived from the properties of addition,

multiplication, exponentiation and order in the real number system.

Another prerequisite is of psychological nature: the reader is expected

to find delight in rigorous thinking. This is absolutely necessary to

enjoy the book. We warn the reader that due to the fact that matters

are treated with complete rigor, the reading of arguments quite often

may turn painful.
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It is important to remark that a deliberate effort was made in pre-

senting algebraic manipulations by what they are, i.e. logical trans-

formations of statements. Let us consider for example the solution

process of the equation 5x − 2 = 2x + 7 in the real number system. In

high school this process is explained as follows:

“Let us solve the equation 5x − 2 = 2x + 7. The −2 passes to the

other side as +2, and the 2x passes to the other side as −2x, obtaining
5x−2x = 7+2, which is 3x = 9. Now since 3 is multiplying on the left

hand side, it passes to divide to the right hand side, and so x = 9

3
. In

this way we see that x = 3”.

This is not an explanation at all! This is the application of an

algorithm which indeed solves the equation. A good explanation

would be as follows:

“Let us solve the equation 5x−2 = 2x+7 in the real number system.

This means that we want to determine all the possible real numbers

x such that five times x minus 2 equals twice x plus 7. Properties of

addition and multiplication among real numbers, imply the validity

of all the following assertions.

The sentence

“x is a real number such that 5x − 2 = 2x + 7”

is logically equivalent to the sentence

“x is a real number such that (5x − 2) + 2 = (2x + 7) + 2”

(Logical equivalence means that the first sentence implies the second

sentence, and that the second sentence implies the first sentence).

Likewise, the sentence

“x is a real number such that (5x − 2) + 2 = (2x + 7) + 2”

is logically equivalent to the sentence

“x is a real number such that 5x = 2x + 9”.

Now, the sentence

“x is a real number such that 5x = 2x + 9”
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is logically equivalent to the sentence

“x is a real number such that 5x − 2x = (2x + 9) − 2x”

and this last sentence is logically equivalent to the sentence

“x is a real number such that 3x = 9”.

Finally, the sentence

“x is a real number such that 3x = 9”

is logically equivalent to the sentence

“x is a real number such that
3x

3
= 9

3
”

which is logically equivalent to the sentence

“x is a real number such that x = 3”.

In conclusion, the sentence

“x is a real number such that 5x − 2 = 2x + 7”

is logically equivalent to the sentence

“x is a real number such that x = 3”.

But determining all the possible objects x satisfying the latter condi-

tion is trivial; only the real number 3 satisfies it. One concludes that

x = 3 and no other real number, is such that 5x − 2 = 2x + 7.”

We make some remarks about the exercises proposed in the book.

They vary in several respects. Some exercises are proposed as the

theory is developed. These type of exercises are meant to help un-

derstanding the ideas that are being developed. At the end of some

sections or strings of sections there are sets of exercises. These ex-

ercises are intended to expose the reader to variations of the situa-

tions treated in the corresponding section or string of sections. Many

times in reading a proof, the reader will find indications like (?), (do
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it!), (why?), (check!), inviting the reader to reflect or take the corre-

sponding action, about what has just been claimed. Also, some parts

of some proofs and examples, are explicitly left as exercises for the

reader.

Finally, the book has many, many pictures, for illustrating con-

cepts, steps of proofs, etc. There is a constant effort in presenting

two pictures of the same concept, an abstract one and a concrete one,

where the plane is taken to be the usual euclidean plane.

1.4 Book plan

Chapter 2 is a preliminary chapter, necessary for the understanding

of the rest of the book. It starts with a review of the methods for

proving statements of the form “P implies Q”, and also of methods

for proving other types of statements, with particular emphasis on the

Induction Method, used for proving statements of the form “P (n) for
n ⩾ n0”. Then there is a rapid introduction to the symbolism used

in logic. After this the basics of the elementary theory of sets are

reviewed, including a discussion of the notion of equivalence relation,

and of the important fact that an equivalence relation defined on a

set, determines a partition of the set into equivalence classes.

Chapter 3 introduces the notion of incidence geometry as a set

together with a collection formed by some of its subsets, having three

properties called axioms of incidence. Then examples of incidence ge-

ometries of various kinds are presented. Then the “main” examples of

incidence geometries, namely the real cartesian plane, the hyperbolic

plane and the elliptic geometry, are presented in complete detail. In

particular, complete proofs, based only on the properties of addition

and multiplication in the real number system, that the three axioms

of incidence hold in these examples, are supplied. After this the sub-

ject of parallelism of lines is discussed, and an additional axiom, called

Playfair’s axiom is studied. Playfair’s axiom is a refined version of

Euclid’s fifth postulate. The chapter ends with a long discussion of

how paralllelism behaves in all the examples of incidence geometries
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previously given. It is of particular importance the discussion of the

behaviour of parallelism in the real cartesian plane, the hyperbolic

plane and the elliptic geometry. It is shown that in the real cartesian

plane, given any point A and any line l, with A not in l, there exists

a unique line passing through A and being parallel to l; that in the

hyperbolic plane, given any point A and any line l, with A not in l,

there exists an infinite number of lines passing through A and being

parallel to l; and that in the elliptic geometry, given any point A and

any line l, with A not in l, there is no line passing through A and

being parallel to l.

Chapter 4 treats the formalization of the notion that one point is

between two other points, i.e., the concept of a betweenness structure

for an incidence geometry. A betweenness structure is defined as a

collection of ordered triples of points of the plane, having four prop-

erties called the betweenness axioms. We remark that the realization

by Hilbert that one of the main deficiencies of Euclid’s axiomatics,

making some of Euclid’s proofs in the Elements ultimate dependant

on pictures, lied in the lack of axioms governing betweenness, con-

stitutes perhaps his main contribution for saving Euclid’s work. The

chapter begins with the definition of betweenness structure for an

incidence geometry. This structure makes it possible to define seg-

ments, triangles and the convexity of a subset of the plane. Then it

is shown that a line l divides the plane minus l into two parts, called

sides of the plane divided by l; and also that a point A of a line l,

divides l minus {A} into two parts, called the sides of l divided by

A. As consequences the following interesting facts are proved to hold

in any incidence geometry equipped with a betweenness structure,

namely, that the endpoints of a segment are entirely determined by

the segment, that each line is formed by an infinite number of points,

and that there is a point between any two given points. Next, the

important notion of ray is introduced, and a long theorem containing

a bunch of facts about rays which prove very useful for the rest of

the book, is stated and proved. Then the fundamental notion of an-

gle is introduced, followed by a discussion of the important notion of

interior of an angle. An important result called Crossbar Theorem is

10



then presented at length. The chapter ends with a discussion of the

usual betweenness structures carried by the real cartesian plane and

the hyperbolic plane. Elliptic geometry is abandoned at this point

for the rest of the book, due to the fact that it does not admit any be-

tweenness structure. It does admit a modified betweenness structure

though (see [2]).

Chapter 5 introduces the notion of structure of congruence of seg-

ments for an incidence geometry equipped with a betweenness struc-

ture. It is defined as a collection of ordered pairs of segments, having

three properties called axioms of congruence of segments. Then a

useful result, called subtraction of segments, is proven. Next, the

notion that a segment is less than another segment, is introduced,

and its main properties are stated and proven, using subtraction of

segments as the main tool. The rest of the chapter is devoted to de-

fine the usual congruence of segment structures in the real cartesian

plane and in the hyperbolic plane, and proving that these satisfy the

three axioms.

Chapter 6 is dedicated to the notion of a structure of congru-

ence of angles for an incidence geometry equipped with a betweennes

structure and a congruence of segments structure. It is defined as a

collection of ordered pairs of angles, having three properties called

axioms of congruence of angles. This structure allows for the defin-

tion of congruence of triangles. Then the concepts of adjacent angles,

supplementary angles and vertical angles are defined. The important

results summarized as “angles which are supplementary of congruent

angles, are congruent”, “a pair of adjacent angles which are congruent

to a pair of supplementary angles, are supplementary” and “vertical

angles are congruent”, are precisely stated and proved. Then the an-

gle addition theorem and the angle subtraction theorem are discussed.

The notion of an angle being less than another angle is introduced,

and its main properties are proven. Right angles are then defined as

angles which are congruent to any of its (two) supplementary angles,

and the congruence of any two right angles is established. The study

of the usual structures of congruence of angles for the real cartesian

plane and the hyperbolic plane occupy the rest of the chapter.
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Finally, Chapter 7 is dedicated to Hilbert Planes. Hilbert Planes

are incidence geometries equipped with a betweenness structure, a

congruence of segments structure and a congruence of angles struc-

ture. This requires that a total of thirteen axioms are satisfied, three

incidence axioms, four betweenness axioms, three congruence of seg-

ments axioms and three congruence of angles axioms. The main

examples of Hilbert Planes are the real cartesian plane and the hy-

perbolic plane. The rest of the chapter is dedicated to the study of

Book I of Euclid’s Elements, a la Hilbert.

1.5 How to study this book

Your attitude, in order to really grasp the material, should be that of

a hyperactive student. Leisurely studying the material will not do it!

Read every sentence carefully. Read the examples and do as many

exercises as possible. You may even try to create some exercises. In

a first reading of the book, you may skip certain particularly long

examples, like the one on parallelism in the hyperbolic plane.
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