Termodinámica estadística

para Ciencias e Ingeniería

Jorge David Escuela de Ciencias

Universidad EAFIT.

Volumen I Universidad EAFIT Medellín - Colombia Dedicado a: mi esposa Doris, y mi hija Catalina

Ín	dice	de figuras	xiii
Ín	dice	de tablas	xix
Pı	refac	io	xxiii
1	En	samble canónico	1
	1.1	Ensamble	2
	1.2	Función de partición canónica	3
		1.2.1 Evaluación de la constante β	7
	1.3	Propiedades termodinámicas	17
		1.3.1 Energía	17
		1.3.2 Presión	20
		1.3.3 Entropía	23
		1.3.4 Energía libre de Helmholtz	29
	1.4	Fluctuaciones	30
		1.4.1 Fluctuaciones en la energía	31
		1.4.2 Distribución gaussiana en un ensamble	34
2	Sist	emas electrónicos	39
	2.1	Partículas distinguibles e independientes	39
	2.2	Partículas indistinguibles e independientes	44
	2.3	Número de estados y partículas	48
	2.4	Funciones de partición en fermiones	55
	2.5	Funciones de partición en átomos	56
		2.5.1 Energía y función de partición traslacional .	57
		$2.5.2$ Energía y función de partición electrónica $% \left({{{\rm{E}}}_{{\rm{E}}}} \right)$.	58
		2.5.3 Degenerancia electrónica en átomos	59
		2.5.4 Estados electrónicos en átomos $\ldots \ldots \ldots$	61
	2.6	Funciones de partición en moléculas	68

2.7	Energ	gía y función de partición vibracional	69
	2.7.1	Moléculas diatómicas	69
	2.7.2	Moléculas poliatómicas	75
2.8	Funci	ón de partición electrónica	78
	2.8.1	Configuración electrónica en moléculas	83
	2.8.2	Moléculas diatómicas	85
	2.8.3	Moléculas poliatómicas	94
	2.8.4	Estados electrónicos en moléculas	101
2.9	Funci	ón de partición rotacional	104
	2.9.1	Sistemas diatómicos	105
	2.9.2	Funciones de partición rotacional y	
		simetría	107
	2.9.3	Rotación de sistemas moleculares	107
	2.9.4	Rotaciones indistinguibles	109
Ens	amble	gran canónico	123
3.1	Energ	gía en términos de $\Xi(V,\beta,\gamma)$	128
3.2	Presić	ón en términos de $\Xi(V,\beta,\gamma)$	128
3.3	Partíc	culas en términos de $\Xi(V, \beta, \gamma)$	129
3.4	La co	nstante γ y la entropía	129
Fer	mione	s y bosones	135
4.1	Funci	ón de partición en Fermi-Dirac	139
4.2	Funci	ón de partición en Bose-Einstein	140
4.3	Propi	edades en las estadísticas	141
	4.3.1	Número de partículas en el k -ésimo estado $$.	141
	4.3.2	Distribución de las partículas	143
	4.3.3	Fluctuación del número de partículas	144
	4.3.4	Presión en las estadísticas de Fermi-Dirac y	
		Bose-Einstein	147
	4.3.5	Energía en las estadísticas de Fermi-Dirac y	
		Bose-Einstein	150
4.4	Régin	nen cuántico y clásico	153
4.5	Fermi	-Dirac en el régimen clásico	153
	4.5.1	Densidad de partículas con $\lambda \to 0$	155
	4.5.2	Presión del sistema con $\lambda \to 0$	157
	4.5.3	Expansión del virial	159

	4.6	Bose-Einstein en el régimen clásico	164
	4.7	Fermi-Dirac en el régimen cuántico	170
		4.7.1 Densidad a bajas temperaturas	172
		4.7.2 Energía a bajas temperaturas	177
		4.7.3 Presión a bajas temperaturas	178
	4.8	Alrededores de la energía de Fermi	181
		4.8.1 Número de partículas N	186
		4.8.2 Potencial químico	187
		4.8.3 Energía	189
		4.8.4 Capacidad calórica	190
	4.9	Bose-Einstein en el régimen cuántico	192
		4.9.1 Condensado de Bose-Einstein	197
	4.10	Radiación del cuerpo negro	201
		4.10.1 Densidad de estados	202
		4.10.2 Función de partición canónica	203
		4.10.3 Ley de Stefan-Boltzmann	205
5	Fun	ciones de partición clásica	211
	5.1	Función de partición clásica Q_{clas}	212
	5.2	Funciones de partición moleculares	213
		5.2.1 Función de partición clásica traslacional: q_{clas}^{tras}	213
		5.2.2 Función de partición clásica rotacional: q_{clas}^{rot}	215
		5.2.3 Función de partición clásica vibracional: q_{clas}^{vib}	216
	5.3	Función de partición de N partículas	218
	5.4	Integral clásica de configuración	220
6	Ga	ses reales	225
	6.1	Presión en un gas real	226
	6.2	Expansión del virial	229
		6.2.1 Función de partición gran canónica	230
		6.2.2 Coeficientes del virial	235
	6.3	Segundo coeficiente del virial $B_2(T)$	244
		6.3.1 $B_2(T)$ v el potencial de Lennard-Jones	247
		6.3.2 $B_2(T)$ y el potencial de pozo cuadrado	254
	6.4	Tercer coeficiente del virial $B_3(T)$	256
		6.4.1 $B_3(T)$ y el potencial de esfera dura	264
		6.4.2 $B_3(T)$ y el potencial de pozo cuadrado	268
	6.5	Diagramas de $B_k(T)$	277

		6.5.1	Conjuntos de dos partículas	279
		6.5.2	Conjuntos de tres partículas	280
		6.5.3	Conjuntos de cuatro partículas	281
7	Líq	uidos s	imples	293
	7.1	Densie	lad de probabilidad	293
	7.2	Funció	ón de distribución	294
		7.2.1	Función de distribución para una partícula .	295
		7.2.2	Función de distribución para dos partículas .	299
		7.2.3	Función de distribución para n partículas .	299
		7.2.4	Densidad de <i>n</i> partículas: $\rho_N^{(n)}$	300
	7.3	Correl	ación entre las partículas	306
		7.3.1	Función de correlación $g^{(n)}(\mathbf{r}_1, \cdots, \mathbf{r}_n)$	307
	7.4	Propie	edades en términos de $g(r)$	311
		7.4.1	Energía de un sistema líquido	311
		7.4.2	Presión en un líquido	316
	7.5	Funció	ón de correlación $g(r)$	321
		7.5.1	Ensamble gran canónico $\Xi(V, \beta, \gamma)$	322
		7.5.2	$g(r)$ como una expansión en ρ	326
		7.5.3	Ecuación de Born-Green-Yvon (BGY) $\ . \ .$.	327
		7.5.4	Tercer coeficiente del virial usando BGY	333
		7.5.5	Solución a la ecuación de Born-Green-Yvon	335
		7.5.6	Líquidos de esfera dura	341
8	Cris	stales a	armónicos	345
	8.1	Dinán	nica de un cristal \ldots \ldots \ldots \ldots \ldots \ldots	346
	8.2	Capac	idad calórica de los cristales	356
		8.2.1	Aproximación de Einstein	360
		8.2.2	Aproximación de Debye	364
		8.2.3	Energía a altas temperaturas	367
		8.2.4	Energía a bajas temperaturas	369
		8.2.5	Capacidad calórica	370
	8.3	Ecua	ción de estado \ldots	377
	8.4	Comp	resibilidad y dilatación térmica	381
9	Poli	ímeros	lineales	387
	9.1	Model	o lineal o gaussiano $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	388
	9.2	Exclus	sión de volúmenes	390

9.3	Cambios en la conformación	392
9.4	Conformación del polímero	393
9.5	Distancia entre los extremos	394
9.6	Distribución de probabilidad	397
	9.6.1 Probabilidad de los vectores de enlace	397
	9.6.2 Probabilidad de la distancia entre los extremo	s398
9.7	Aproximación de grano grueso	408
9.8	Función de partición	410
9.9	Cadenas con interacciones	413
Apénd	ice A: Constantes físicas	417
Apénd	ice B: Factores de conversión	419
B.1	Conversiones energéticas	419
B.2	Conversiones de presión	419
Apénd	ice C: Relaciones matemáticas	421
С.1	Funciones trigonométricas	421
C.2	Expansiones de Tavlor	421
C.3	Integrales	422
Apénd	ice D: Tablas de grupos puntuales	423
D.1	Grupos no axiales	423
D.2	Grupos $C_{\infty V}, D_{\infty h}$	424
D.3	Grupos C_n	424
D.4	Grupos D_n	425
D.5	Grupos C_{nv}	426
D.6	Grupos C_{nh}	427
D.7	Grupos D_{nh}	427
D.8	Grupos D_{nd}	428
D.9	Grupos cúbico	429
Apénd	ice E: Producto directo	431
- E.1	Grupos: $C_{\infty v}, D_{\infty h}$	431
E.2	Grupos: C_n , $n = 2, 3, 6; D_n$, $n = 3, 6; C_{nv}$, $n =$	
	2, 3, 6; C_{nh} , $n = 2, 3, 6; D_{nh}$, $n = 3, 6, D_{3d}, S_6$.	432
E.3	Grupos: D_2, D_{2h}	432
E.4	Grupos: $C_4, D_4, C_{4v}, C_{4h}, D_{4h}, D_{2d}, S_4 \ldots \ldots$	432

E.5	Grupos:	C_5, I	$D_5, 0$	$C_{5v},$	C_{5h}	, <i>1</i>	D_{5h}	ı, 1	D_5	d								433
E.6	Grupos:	$D_{4d},$	S_8 .	• • •		•		•	•	•	•	 •	•	•		•	•	433
E.7	Grupos:	T, T	h, T_{a}	$_{d}, O$, O_h			•		•	•						•	433
E.8	Grupos:	I, I_h				•		•	•	•	•	 •	•	•	•	•	•	434
Bibliog	rafía																	435

Índice de figuras

2.1	Distribición bidimensional de los estados energéticos	40
2.2	Desdoblamiento de los estados electrónicos para la configuración atómica nn^2	49 66
2.3	Diagrama de los niveles energéticos de un sistema molecular. Comparación de sus magnitudes de en- ergías: $\Delta \mathcal{E}_{ele.} >> \Delta \mathcal{E}_{vib.} > \Delta \mathcal{E}_{rot.}$. D_0 : energía de disociación, D_e : energía electrónica y \mathcal{E}_{ZPE} : energía	00
	en el punto cero	68
2.4	Variación de la capacidad calórica con respecto a la temperatura para algunas moléculas diatómicas	75
2.5	Esquema para determinar el grupo puntual de una molécula. En cada una de las interrogaciones se le debe de anteponer la palabra <i>existe</i> o <i>tiene</i>	84
2.6	Diagrama energético de orbitales moleculares gener- ado por la interacción de los orbitales atómicos del Hidrógeno y del Helio para formar la molécula de HeH.	86
2.7	Diagrama de orbitales moleculares generado por la interacción de los orbitales atómicos $2p_a$ y $2p_b$. El color rojo indica región atómica positiva, mientras que el color azul indica región atómica negativa. Los sistemas coordenadas indican las orientaciones de los	07
0.0	orbitales moleculares.	81
2.8	Liecto del plano de simetria σ_{xz} en una molecula diatómica	88

2.9	Forma del orbital molecular π_{2p}^{*2} . El eje de coorde- nadas z sale perpendicular al plano xy y los planos verticales $\sigma_v(xz)$ y $\sigma_v(yz)$ son perpendiculares al plano de la hoja.	91
2.10	Forma de las superficies electrónicas para la molécula de oxígeno. Para moléculas diatómicas: el estado basal de rotula como X y los estados excitados como A, B, C, \cdots	91
2.11	Diagrama energético de los orbitales moleculares del agua.	98
2.12	Diagrama energético de los orbitales moleculares de la molécula de SiH_4 .	100
3.1	Representación de un ensamble gran canónico	124
4.1	Distribución de las partículas en las estadísticas de Fermi-Dirac y Bose-Einstein	144
4.2	Comportamiento de la densidad del número de partícul alrededor del potencial químico	as 147
4.3	Sí μ_1 es pequeño, λ es pequeño se trata de un regimen clásico, mientras que sí λ es grande se trata de un régimen cuántico. μ_1 es el potencial químico inicial. μ_2 es el potencial químico final después de haber alcanzado el equilibrio cuando el sistema se encuenta en un baño de partículas con mayor μ .	154
4.4	Función de distribución de Fermi-Dirac y su derivada. La Gaussiana enmarca la región de los alrededores de la oportía de Fermi	189
4.5	Solución de la ecuación $\rho \Lambda^3 = g_{3/2}(\lambda)$. La solución de las dos funciones es la intersección con un valor	102
4.6	de 2.612	195
4.7	$g_{3/2} \approx 2.612 \text{ en } \lambda = 1 \dots$ Gráfico de la ecuación (4.286)	196 200
6.1	Comparación entre el potencial del Lennard-Jones (LJ) y la función de Mayer	247

xiv

6.2	Potencial de pozo cuadrado. \mathcal{E} es la profundidad del pozo. $\sigma \neq \lambda$ son parámetros	254
6.3	Comparación entre el potencial de Lennard-Jones y el potencial de pozo cuadrado y sus correspondi- entes gráficos del segundo coeficiente del virial para el nitrógeno gaseoso $(N_{2(g)})$. Los datos usados en la evaluación de las ecuaciones (6.126) y (6.152) son	-
	$\frac{\epsilon}{k_B} = 95.2 \text{ K}, \ \sigma = 3.745 \text{ y} \ \lambda = 1.555 \dots \dots$	256
6.4	Coeficientes del virial reducidos para el nitrógeno gaseoso $(N_{2(g)})$. Los datos usados en la obtención de	
	las Figuras son: $\frac{\epsilon}{k_B} = 95.2$ K, $\sigma = 3.745$ y $\lambda = 1.555$	276
6.5	Diagrama correspondiente a sistema real compuesto por 28 partículas idénticas formando diferentes con- juntos	279
7.1	Función de correlación $g(r)$ usando la ecuación (7.143) a varias temperaturas para el Argón. $u(r)$: es el po- tencial de Lennard-Jones con $\frac{\epsilon}{k_B} = 120$ K, $\sigma = 3.41$	
	Å y $T^* = \frac{\epsilon}{k_B T}$	325
7.2	Distribución de tres partículas en el plano xy . $R = r_{12}$, $s = r_{13}$, $r = r_{23}$, $s^2 = x^2 + y^2$, $r^2 = y^2 + (R - x)^2$	335
7.3	Límites de integración de la ecuación (7.194)	337
7.4	Límites de integración de la ecuación (7.200)	339
7.5	Funciones de correlación para un líquido de esfera dura y la aproximación simple corregida con el po- tencial de esfera dura como una perturbación. La gráfica BGY de esfera dura es el resultado de la solución analítica de la ecuación (7.221) con $\lambda=1.0$. En la aproximación simple en el $g(r)$ se usa el po- tencial de Leppard Lepes	211
		044
8.1	Cristal armónico unidimensional. $K_{s,s'}$ es la con- stante del resorte entre los átomos s y s' y u_s la velocidad del s-ésimo átomo	346
82	Interacciones atómicas en un cristal	353
8.3	Primera zona de Brillowin, $K \in \left[-\frac{\pi}{a}, \frac{\pi}{a}\right]$	354

8.4 Gráficos de las ecuaciones: Línea recta
$$\frac{\omega}{\sqrt{\frac{4C_1}{m}}} \approx \frac{ka}{2}$$

- 9.11 Modelo de latice cúbico con seis vectores de enlace iguales. Los vectores que apuntan en la misma dirección de los vectores de enlace de los vecinos más cercanos son: $\mathbf{a} = (\pm b_0, 0, 0), (0, \pm b_0, 0) \ge (0, 0, \pm b_0)$ 398

9.12 Representación de los segmentos de una cadena lineal	
(Figura izquierda) transformados como segmentos de	
grano-grueso y su representación de esfera y resorte	
(Figura derecha) \ldots	409

xviii

Índice de tablas

1.1	Algunas propiedades termodinámicas en el ensamble canónico	30
1.2	Distribución de los estados energéticos y sus ocupan- cias en un ensamble	34
2.1	Valores para la desigualdad de la ecuación (2.39) a un bar de presión para un número de sistemas simples. Datos tomados de [2] y pueden reproducirsen usando la ecuación (2.39)	54
2.2	Estados electrónicos del átomo de Hidrógeno. Con- figuración electrónica $1s^1$.	63
2.3	Distribución de los posibles estados electrónicos para la configuración atómica np^2	64
2.4	Determinantes de Slater de la configuración atómica n^2	65
2.5	Términos Espectroscópicos de la configuración np^2 .	65
2.6	Términos resultantes de varias configuraciones electrón	icas
	con electrones equivalentes. Ver referencia [8]	67
2.7	Términos Espectroscópicos de Electrones no Equiv-	
	alentes. Ver referencia $[8] \ldots \ldots \ldots \ldots \ldots \ldots$	67
2.8	Temperaturas vibracionales y las funciones definidas	
	por la ecuación (2.119)	79
2.9	Geometrías que adoptan las diferentes combinaciones de orbitales atómicos para formar un complejo molec-	
	ular. Ver Ref. $[14]$	83

2.10) Distribución electrónica molecular de la configuración π_{2p}^{*2} . La línea encima del orbital π indica el signo del espín electrónico. El subíndice 1 y/o -1 corresponde al número cuántico m_{ℓ}	90
2.11	Determinantes de Slater de la configuración molecu- lar π_{2p}^{*2}	90
2.12	2 Estados electrónicos y multiplicidad de la configu- ración molecular π_{2p}^{*2} . Obsérvese la importancia de la magnitud de M_L .	90
2.13	Propiedades de moléculas diatómicas homonucleares en sus estados electrónicos fundamentales. Datos procedentes de [17]	93
2.14	Términos resultantes de varias configuraciones electrón para moléculas diatómicas. Ver referencia [8]	icas 94
2.15	5 Tabla de caracteres del grupo puntual C_{2V} [18, 19] y la molécula de agua. A_1 , A_2 , B_1 y B_2 son las representaciones irreducibles	95
2.16	Representación reducible del conjunto de orbitales de los ligandos de la molécula de agua.	96
2.17	'Número de simetría σ para cada una de las geometrías moleculares. (ver referencia [8])	110
2.18	⁸ Números de simetría rotacionales σ para grupos pun- tuales. $n = 2, 3, 4, \cdots$ (ver referencia [8])	110
2.19	Constantes rotacionales en cm^{-1} . Datos de la Ref [20] $\ldots \ldots \ldots$	118
2.20) Entropías (en $JK^{-1}mol^{-1}$) determinadas por calorímet y mecánica estadística. Datos referenciados de [21, 22]	ro]121
3.1	Algunas propiedades termodinámicas en el ensamble gran canónico	133
4.1	En las ecuaciones el signo (+) corresponde a la es- tadística de Fermi-Dirac, mientras que el signo (-) corresponde a la estadística de Bose-Einstein λ =	
	$e^{\beta\mu} \ge \beta = \frac{1}{k_B T}$.	152

4.2	Expresiones de Fermi-Dirac y Bose-Einstein en el	
	comportamiento clásico o debílmente degenerado. $g_n(\lambda)$	() =
	$\sum_{\ell=1}^{\infty} \lambda^{\ell}$	1 20
	$\sum_{\ell=1} \overline{\ell^n} \cdots \cdots$	170
4.3	Parámetros de la superficie de Fermi. [25]	177
4.4	ALgunas propiedades de la estadística de Fermi-Dirac	
	en el régimen cuántico.	181
4.5	Propiedades del gas de Fermi fuertemente degenerado	182
4.6	Propiedades de la estadística de Fermi-Dirac en el	
	régimen cuántico y alrededor de la energía de Fermi.	192
F 1	Companyation de las formientes de mantinién alégies au	
0.1	comparación de las funciones de partición clasica y	017
		211
6.1	Motivo topológico de un conjunto de 2 partículas.	280
6.2	Motivos topológicos formados por un conjunto de 3	
	partículas	281
6.3	Motivos topológicos y sus correspondientes funciones	
	de Mayer para un clúster de 4 partículas y 3 enlaces	285
6.4	Motivos topológicos y sus correspondientes funciones	
	de Mayer para un clúster de 4 partículas con 4 enlaces.	289
6.5	Número total de conjuntos de 4 partículas y sus co-	
	rrespondientes motivos topológicos. p es el número	
	de partículas, k es el número de enlaces y n corre-	
	sponde al número de motivos topológicos generados.	290
6.6	Motivos topológicos resultante de los conjuntos de 2,	
	3 y 4 partículas. p : es el número de partículas, k :	
	es el número de enlaces y n : corresponde al número	
	total de motivos generados.	291

xxii

Prefacio

El objetivo fundamental de la mecánica estadística es vincular el detalle determinista de la dinámica microscópica de muchas partículas al promedio de la descripción fenomenológica del comportamiento macroscópico. La pedagogía tradicional en la enseñanza del comportamiento de los sistemas presenta una gran disparidad entre los comportamientos microscópico y macroscópico. En muchos tratamientos, el comportamiento macroscópico se explica principalmente por medio de la termodinámica clásica, a menudo antes de que se tenga el conocimiento de las propiedades cuánticas de las partículas que forman el sistema. Por lo tanto, el problema consiste en describir los nexos existentes entre la dinámica de los sistemas macroscópicos y sus constituyentes microscópicos.

Antes del surgimiento de la mecánica cuántica, Ludwig Boltzmam formuló la interpretación de la probabilidad en la evolución de un sistema aislado, elemento central en la teoría de la mecánica cuántica. Más tarde, la mecánica cuántica incorporó este modelo usando la discretización de las energías accesibles de las partículas que forman el sistema en el desarrollo de la termodinámica estadística. Hoy en día esta disciplina no solo explica las propiedades del sistema, sino que también proporciona el formalismo en los fenómenos de transporte molecular y la dinámica de las reacciones moleculares [2, 3, 4].

El principal objetivo de este libro, es dar una descripción fundamental y detallada de los temas de termodinámica estadística de gases, líquidos, sólidos y polímeros, usando un desarrollo matemático simplificado con el propósito de reducir las dificultades en adquirir los conceptos básicos de termodinámica estadística. Además, el libro posee un contenido muy general orientado a estudiantes e investigadores en física, química, biología e ingeniería que requieran conocimientos básicos para la obtención de propiedades de sus sistemas de estudio o investigación, a partir de propiedades microscópicas.

El contenido del libro es una copia de las notas de clase de Física Estadística del departamento de Ciencias Físicas de la Universidad EAFIT, las cuales son revisiones de textos clásicos de la mecánica y la termodinámica estadística, como *Statistical Mechanics* de D. McQuarrie, *Statistical Mechanics* de T. Hill, *Statistical Thermodinamic* de D. McQuarrie, *Liquid State Physics* de C. Croxton y *Statistical Mechanics of Solids* de L. Girifalco.

El autor agradece a los estudiantes de la Universidad EAFIT por sus aportes en las notas de clases; a los doctores profesores Albeiro Restrepo Cossio del Instituto de Química de la Universidad de Antioquia, Juan Manuel Jaramillo Ocampo del Departamento de Ciencias Físicas de la Universidad EAFIT y Cesar Pérez del departamento de Ciencias Biológicas de la Universidad EAFIT del Instituto de Química de la Universidad de Antioquia, por sus aportes durante la revisión de éste libro.

> Jorge David Junio de 2017

Capítulo 1

Ensamble canónico

En este capítulo se determinan los valores promedio termodinámicos de un sistema macroscópico compuesto de partículas no interactuantes, tales como energía interna, entropía y energía libre, usando los resultados de la teoría *ab-initio*. Este objetivo se alcanzará con el análisis de las propiedades mecánicas (presión, energía y volumen) y las variables termodinámicas no mecánicas (entropía y energía libre). Una forma fácil de distinguir las propiedades mecánicas y no mecánicas es que las propiedades mecánicas son definidas sin apelar al concepto de la temperatura, mientras que las propiedades no mecánicas involucran la temperatura.

Considérese un sistema macroscópico, por ejemplo, un litro de agua. Desde el punto de vista macroscópico, el sistema puede especificarse con pocos parámetros: el volumen, el número de moléculas de agua y la temperatura. Desde el punto de vista microscópico, se tendría un enorme número de estados cuánticos. Así, un mol de agua (18 gramos) contiene 6.02×10^{23} moléculas de agua. Por lo tanto, es muy dificultoso manejar órdenes de 10^{23} partículas o estados cuánticos (asumiendo un estado cuántico por partícula) para calcular una propiedad termodinámica, sabiendo que los valores de las propiedades en cada posible estado cuántico, en general, son diferentes.

En esta etapa, se debe apelar a los trabajos de Maxwell, y particularmente a los de Gibbs [5]. Sus aproximaciones indican que para calcular el valor de una propiedad termodinámica (M), se debe calcular la propiedad en cada uno de los estados cuánticos (M_j) , para luego especificar el sistema en el sentido macroscópico. Con el promedio de esas propiedades se obtiene la contribución de cada uno de los posibles estados cuánticos postulándose que: *el promedio de la propiedad corresponde a la propiedad termodinámica*. Por ejemplo, el promedio energético corresponde a la energía termodinámica

$$\overline{E} \longleftrightarrow E \tag{1.1}$$

de la misma forma, la presión tiene una relación entre el promedio de la presión \overline{P} y la presión del sistema termodinámico

$$\overline{P} \longleftrightarrow P \tag{1.2}$$

1.1 Ensamble

Un sistema macroscópico es una colección de partículas del orden de 10^{23} partículas, el cuál es considerado como un ensamble. El concepto de ensamble dado por Gibbs dice: "Un ensamble es una colección (mental o virtual) de un gran número de sistemas, denotado por \mathcal{A} , y a su vez es una replica del sistema termodinámico de interés" [1]. Por ejemplo, suponga que se tiene un sistema aislado con volumen V, N moléculas (no mezcladas) y energía E. Entonces, el ensamble tendría un volumen $\mathcal{A}V$, $\mathcal{A}N$ moléculas y energía total $\mathcal{A}E$. Cada uno de los sistemas en este ensamble, es un sistema mecanocuántico de N moléculas contenidas en un volumen V. Los valores de $N \neq V$, junto con los potenciales moleculares, son suficientes para calcular los autovalores energéticos E_j (usando la ecuación de Schrödinger) y sus degenerancias $\Omega(E_i)$. Así, la energía (macroscópica) E suele ser la energía del *j*-ésimo sistema (E_i) con una respectiva degerancia $\Omega(E)$. Aunque todos los sistemas en el ensamble son idénticos desde el punto de vista termodinámico, pueden ser diferentes a nivel mecano cuántico.

El ensamble debe obedecer al *principio de igual probabilidad*. Es decir, se requiere que cada uno de los estados cuánticos de $\Omega(E)$ tengan la misma representación en el ensamble. Así, ninguno de los estados cuánticos es más importante en $\Omega(E)$. Todos los estados cuánticos de $\Omega(E)$ son consistentes con los únicos valores del sistema $N, V \neq E$. Claro que el número de sistemas en el ensamble es la integral de $\Omega(E)$. El número de sistemas en el ensamble es muy grande y puede arbitrariamente ser tan grande al duplicar, triplicar, ..., su tamaño. Una alternativa de interpretación del principio de igualación a priori es: un sistema aislado $(N, V \neq E \text{ fijos})$ es indistinguible tomar cualquiera de los estados cuánticos ascesibles $\Omega(E)$. Considere un sistema con N, V y T variables independientes. Cada sistema está contenido en un volumen V con paredes permeables al calor, pero impermeables al paso de las partículas. El ensamble se encuentra en un baño de temperatura uniforme T. Así, cuando se alcance el estado estacionario, cada uno de los sistemas que conforman el ensamble contiene los mismos valores de N, V y T. El principio de probabilidades iguales, se sigue cumpliendo entre estados con la misma energía. Si se considera el ensamble como un sistema aislado, se tendría un ensamble denominado ensamble canónico [2].

En la próxima sección, se enfocará la atención en un ensamble cuyos sistemas tienen N, $V \ge E$ fijos. Este es llamado un ensamble microcanónico y es de utilidad en las discusiones teóricas. En muchas situaciones prácticas se considerará sistemas aislados en especial, se considerará fija la temperatura más que la energía.

1.2 Función de partición canónica

Un ensamble está compuesto por un número de infinitos sistemas, los cuales están caracterizados por un determinado número de partículas, una energía, un volumen, y tienen asceso a diferentes estados energéticos. Ahora, denótese por a_j al *j*-ésimo sistema del ensamble que se encuentran en el estado con energía $E_j(N, V)$ y a \mathcal{A} como el número total de sistemas que posee el ensamble. Se desea conocer la probabilidad de que el sistema a_j se encuentre en el estado energético con energía $E_j(N, V)$. Esta probabilidad puede encontrarse mediante el número relativo de sistemas del ensamble que podría tener en cada estado [6]. Por ejemplo, sean los estados 1 y 2 con energías $E_1(N, V)$ y $E_2(N, V)$. El número relativo de sistemas en los estados con energías E_1 y E_2 solo depende de las energías E_1 y E_2 (N y V son constantes), es decir

$$\frac{a_2}{a_1} = f(E_1, E_2) \tag{1.3}$$

donde a_1 y a_2 son el número de sistemas en el ensamble en los estados 1 y 2, y la forma de la función f, que solamente depende de las energías debe ser determinada. Ahora, debido a que la energía es una cantidad que puede ser referenciada a la energía cero, la dependencia de E_1 y E_2 en la ecuación (1.3) puede escribirse de la siguiente forma

$$f(E_1, E_2) = f(E_1 - E_2) \tag{1.4}$$

así que,

$$\frac{a_2}{a_1} = f(E_1 - E_2) \tag{1.5}$$

La ecuación (1.5) es aplicable en cualquier par de estados, por ejemplo, relacionando los sistemas a_3 con los sistemas a_2 y a_1 , se tienen las siguientes relaciones:

$$\frac{a_3}{a_2} = f(E_2 - E_3) \tag{1.6}$$

$$\frac{a_3}{a_1} = f(E_1 - E_3) \tag{1.7}$$

La relación entre los sistemas a_3 y a_1 , puede escribirse como

$$\frac{a_3}{a_1} = \frac{a_2}{a_1} \frac{a_3}{a_2} \tag{1.8}$$

se puede usar las ecuaciones (1.5) y (1.6) para obtener las relaciones a_3 y a_1 en términos de las funciones energéticas

$$\frac{a_3}{a_1} = f(E_1 - E_2)f(E_2 - E_3) \tag{1.9}$$

Las ecuaciones (1.7) y (1.9) indican que

$$f(E_1 - E_3) = f(E_1 - E_2)f(E_2 - E_3)$$
(1.10)

sumando y restando E_2 en el lado izquierdo de la ecuación, se obtiene la relación de funciones energéticas

$$f[(E_1 - E_2) + (E_2 - E_3)] = f(E_1 - E_2)f(E_2 - E_3)$$
(1.11)

En la ecuación (1.11), se observa que se cumple la relación de funciones,

$$f(x+y) = f(x)f(y)$$
 (1.12)

La forma de la ecuación (1.12) satisface las relaciones exponenciales,

$$e^{x+y} = e^x e^y \tag{1.13}$$

en donde se concluye que la forma de f(E) es proporcional al exponencial $e^{\beta E}\,$ y puede escribirse como

$$f(E) \sim e^{\beta E} \tag{1.14}$$

com $\beta\,$ como una constante arbitraria. En el caso general, el número relativo de sistemas en los estados con energías myn,está dado por

$$\frac{a_n}{a_m} \sim e^{\beta(E_m - E_n)} = \frac{e^{-\beta E_n}}{e^{-\beta E_m}} \tag{1.15}$$

5

La forma de la ecuación (1.15), implica que el número de sistemas a_m y a_n son dados por

$$a_j = C e^{-\beta E_j} \tag{1.16}$$

donde j representa cualquiera de los dos estados m o n, y C es una constante que no depende de las partículas ni de la energía. La evaluación de la constante C es ligeramente sencilla. Sumando en ambos lados de la ecuación (1.16) sobre todos los estados cuánticos que forman el ensamble, se obtiene:

$$\sum_{j} a_j = C \sum_{j} e^{-\beta E_j} \tag{1.17}$$

pero la suma sobre todos los sistemas del ensamble es igual al número total de sistemas en el ensamble

$$\sum_{j} a_{j} = \mathcal{A} \tag{1.18}$$

la constante C está dada por

$$C = \frac{\mathcal{A}}{\sum_{j} e^{-\beta E_j}} \tag{1.19}$$

Sí se sustituye la ecuación (1.19) en (1.16), se obtiene,

$$a_j = \frac{\mathcal{A}}{\sum\limits_{j} e^{-\beta E_j}} e^{-\beta E_j} \tag{1.20}$$

dividiendo en ambos lados por número total de sistemas que forman el ensamble, se obtiene la relación

$$\frac{a_j}{\mathcal{A}} = \frac{e^{-\beta E_j}}{\sum_j e^{-\beta E_j}} \tag{1.21}$$

En la ecuación (1.21) se observa que la fracción $\frac{a_j}{\mathcal{A}}$ es la fracción de sistemas en el ensamble que se encontraría en el *j*-ésimo estado con energía $E_j(N, V)$. Esta fracción representa la probabilidad que posee el *j*-ésimo sistema con energía E_j en el ensamble y estaría dada por [2]

$$p_j = \frac{e^{-\beta E_j}}{\sum\limits_j e^{-\beta E_j}} \tag{1.22}$$

La ecuación (1.22) es la manera en que están ponderados los valores de energía y es un resultado importante en la mecánica estadística. El denominador de la ecuación (1.22) se acostumbra a denotarse por Q, indicando la dependencia de las variables $N, V \ge \beta$

$$Q(N,V,\beta) = \sum_{j} e^{-\beta E_j}$$
(1.23)

Además, la ecuación (1.23) es conocida como la *Función de partición canónica*, e indica los pesos de las contribuciones energéticas en el ensamble. En la ecuación (1.23) solo queda por determinar la forma de la constante β .

1.2.1 Evaluación de la constante β

Dada la probabilidad de encontrar un sistema con valores de N, V y T en el *j*-ésimo estado cuántico, se puede calcular el promedio de cualquier propiedad mediante la expresión de la estadística clásica

$$\overline{M} = \sum_{j} M_{j} p_{j} \tag{1.24}$$

donde \overline{M} es el valor medio de la propiedad medida y M_j es el valor de la propiedad en el *j*-ésimo estado. Debido a que el objetivo de esta sección es la determinación de la constante β , hacemos uso de la relación entre las propiedades mecánicas (energía y presión). Como la energía libre de Helmholtz A es la energía disponible que tiene el sistema, se usará para encontrar la relación entre la energía interna y la presión del sistema. Partiendo de la definición de la energía libre de Helmholtz [7, 8]

$$A(T, V) = E(T, V) - TS(T, V)$$
(1.25)

donde E es la energía interna yS es la entropía. La variación de A con respecto al volumen a temperatura constante está dada por la expresión

$$\left(\frac{\partial A}{\partial V}\right)_T = \left(\frac{\partial E}{\partial V}\right)_T - T\left(\frac{\partial S}{\partial V}\right)_T \tag{1.26}$$

Analizando como varía la energía libre de Helmholtz y la entropía con respecto al volumen, se puede encontrar relaciones entre las propiedades mecánicas. Considere la variación de la energía libre de Helmholtz en un proceso reversible

$$dA = -PdV - SdT \tag{1.27}$$

es decir: A = A(V, T), y en forma diferencial se tiene

$$dA = \left(\frac{\partial A}{\partial V}\right)_T dV + \left(\frac{\partial A}{\partial T}\right)_V dT \tag{1.28}$$

comparando las ecuaciones (1.27) y (1.28), se obtienen las relaciones

$$P = -\left(\frac{\partial A}{\partial V}\right)_T \quad y \quad S = -\left(\frac{\partial A}{\partial T}\right)_V \tag{1.29}$$

derivando las ecuaciones (1.29) con respecto a la temperatura y al volumen, se obtiene las relaciones entre las variables S y P